Self-Validated Ensemble Models with Lasso and Relaxed-Elastic Net Regression


[Up] [Top]

Documentation for package ‘SVEMnet’ version 2.1.3

Help Pages

SVEMnet-package SVEMnet: Self-Validated Ensemble Models with Relaxed Lasso and Elastic-Net Regression
coef.svem_model Coefficient Nonzero Percentages from an SVEM Model
glmnet_with_cv Fit a glmnet Model with Cross-Validation
plot.svem_model Plot Method for SVEM Models
plot.svem_significance_test Plot SVEM Significance Test Results for Multiple Responses
plot_svem_significance_tests Plot SVEM Significance Test Results for Multiple Responses
predict.svem_cv Predict for svem_cv objects (and convenience wrapper)
predict.svem_model Predict Method for SVEM Models
predict_cv Predict for svem_cv objects (and convenience wrapper)
print.svem_significance_test Print Method for SVEM Significance Test
SVEMnet Fit an SVEMnet Model (with optional relaxed elastic net)
svem_random_table_from_model Generate a Random Prediction Table from a Fitted SVEMnet Model (no refit)
svem_significance_test SVEM Significance Test with Mixture Support
svem_significance_test_parallel SVEM Significance Test with Mixture Support (Parallel Version)