Type: | Package |
Title: | Bivariate Pareto Models |
Version: | 1.0.3 |
Date: | 2019-12-11 |
Author: | Jia-Han Shih, Wei Lee |
Maintainer: | Jia-Han Shih <tommy355097@gmail.com> |
Description: | Perform competing risks analysis under bivariate Pareto models. See Shih et al. (2019) <doi:10.1080/03610926.2018.1425450> for details. |
Depends: | compound.Cox, methods |
License: | GPL-2 |
Encoding: | UTF-8 |
LazyData: | true |
RoxygenNote: | 7.0.0 |
Repository: | CRAN |
NeedsCompilation: | no |
Packaged: | 2019-12-11 14:58:19 UTC; Tommy |
Date/Publication: | 2019-12-11 16:00:02 UTC |
Bivariate Pareto Models
Description
Perform competing risks analysis under bivariate Pareto models. See Shih et al. (2018) for details.
Details
The functions in this package are based on latent failure time models with competing risks in Shih et al. (2018). However, they can be adapted to dependent censoring models in Emura and Chen (2018). See MLE.SN.Pareto
for example.
Author(s)
Jia-Han Shih, Wei Lee
Maintainer: Jia-Han Shih <tommy355097@gmail.com>
References
Shih J-H, Lee W, Sun L-H, Emura T (2018), Fitting competing risks data to bivariate Pareto models, Communications in Statistics - Theory and Methods, doi: 10.1080/03610926.2018.1425450.
Emura T, Chen Y-H (2018) Analysis of Survival Data with Dependent Censoring, Copula-Based Approaches, JSS Research Series in Statistics, Springer, in press.
Generate samples from the Frank copula with the Pareto margins
Description
Generate samples from the Frank copula with the Pareto margins.
Usage
Frank.Pareto(n, Theta, Alpha1, Alpha2, Gamma1, Gamma2)
Arguments
n |
Sample size. |
Theta |
Copula parameter |
Alpha1 |
Positive scale parameter |
Alpha2 |
Positive scale parameter |
Gamma1 |
Positive shape parameter |
Gamma2 |
Positive shape parameter |
Value
X |
|
Y |
|
References
Shih J-H, Lee W, Sun L-H, Emura T (2019), Fitting competing risks data to bivariate Pareto models, Communications in Statistics - Theory and Methods, 48:1193-1220.
Examples
library(Bivariate.Pareto)
Frank.Pareto(5,5,1,1,1,1)
Kendall's tau under the SNBP distribution
Description
Compute Kendall's tau under the Sankaran and Nair bivairate Pareto (SNBP) distribution (Sankaran and Nair, 1993) by numerical integration.
Usage
Kendall.SNBP(Alpha0, Alpha1, Alpha2, Gamma)
Arguments
Alpha0 |
Copula parameter |
Alpha1 |
Positive scale parameter |
Alpha2 |
Positive scale parameter |
Gamma |
Common positive shape parameter |
Details
The admissible range of Alpha0
(\alpha_{0}
) is 0 \leq \alpha_{0} \leq (\gamma+1) \alpha_{1} \alpha_{2}.
Value
tau |
Kendall's tau. |
References
Sankaran PG, Nair NU (1993), A bivariate Pareto model and its applications to reliability, Naval Research Logistics, 40:1013-1020.
Shih J-H, Lee W, Sun L-H, Emura T (2019), Fitting competing risks data to bivariate Pareto models, Communications in Statistics - Theory and Methods, 48:1193-1220.
Examples
library(Bivariate.Pareto)
Kendall.SNBP(7e-5,0.0036,0.0075,1.8277)
Maximum likelihood estimation for bivariate dependent competing risks data under the Frank copula with the Pareto margins and fixed \theta
Description
Maximum likelihood estimation for bivariate dependent competing risks data under the Frank copula with the Pareto margins and fixed \theta
.
Usage
MLE.Frank.Pareto(
t.event,
event1,
event2,
Theta,
Alpha1.0 = 1,
Alpha2.0 = 1,
Gamma1.0 = 1,
Gamma2.0 = 1,
epsilon = 1e-05,
d = exp(10),
r.1 = 6,
r.2 = 6,
r.3 = 6,
r.4 = 6
)
Arguments
t.event |
Vector of the observed failure times. |
event1 |
Vector of the indicators for the failure cause 1. |
event2 |
Vector of the indicators for the failure cause 2. |
Theta |
Copula parameter |
Alpha1.0 |
Initial guess for the scale parameter |
Alpha2.0 |
Initial guess for the scale parameter |
Gamma1.0 |
Initial guess for the shape parameter |
Gamma2.0 |
Initial guess for the shape parameter |
epsilon |
Positive tunning parameter in the NR algorithm with default value |
d |
Positive tunning parameter in the NR algorithm with default value |
r.1 |
Positive tunning parameter in the NR algorithm with default value 1. |
r.2 |
Positive tunning parameter in the NR algorithm with default value 1. |
r.3 |
Positive tunning parameter in the NR algorithm with default value 1. |
r.4 |
Positive tunning parameter in the NR algorithm with default value 1. |
Value
n |
Sample size. |
count |
Iteration number. |
random |
Randomization number. |
Alpha1 |
Positive scale parameter for the Pareto margin (failure cause 1). |
Alpha2 |
Positive scale parameter for the Pareto margin (failure cause 2). |
Gamma1 |
Positive shape parameter for the Pareto margin (failure cause 1). |
Gamma2 |
Positive shape parameter for the Pareto margin (failure cause 2). |
MedX |
Median lifetime due to failure cause 1. |
MedY |
Median lifetime due to failure cause 2. |
MeanX |
Mean lifetime due to failure cause 1. |
MeanY |
Mean lifetime due to failure cause 2. |
logL |
Log-likelihood value under the fitted model. |
AIC |
AIC value under the fitted model. |
BIC |
BIC value under the fitted model. |
References
Shih J-H, Lee W, Sun L-H, Emura T (2018), Fitting competing risks data to bivariate Pareto models, Communications in Statistics - Theory and Methods, doi: 10.1080/03610926.2018.1425450.
Examples
t.event = c(72,40,20,65,24,46,62,61,60,60,59,59,49,20, 3,58,29,26,52,20,
51,51,31,42,38,69,39,33, 8,13,33, 9,21,66, 5,27, 2,20,19,60,
32,53,53,43,21,74,72,14,33, 8,10,51, 7,33, 3,43,37, 5, 6, 2,
5,64, 1,21,16,21,12,75,74,54,73,36,59, 6,58,16,19,39,26,60,
43, 7, 9,67,62,17,25, 0, 5,34,59,31,58,30,57, 5,55,55,52, 0,
51,17,70,74,74,20, 2, 8,27,23, 1,52,51, 6, 0,26,65,26, 6, 6,
68,33,67,23, 6,11, 6,57,57,29, 9,53,51, 8, 0,21,27,22,12,68,
21,68, 0, 2,14,18, 5,60,40,51,50,46,65, 9,21,27,54,52,75,30,
70,14, 0,42,12,40, 2,12,53,11,18,13,45, 8,28,67,67,24,64,26,
57,32,42,20,71,54,64,51, 1, 2, 0,54,69,68,67,66,64,63,35,62,
7,35,24,57, 1, 4,74, 0,51,36,16,32,68,17,66,65,19,41,28, 0,
46,63,60,59,46,63, 8,74,18,33,12, 1,66,28,30,57,50,39,40,24,
6,30,58,68,24,33,65, 2,64,19,15,10,12,53,51, 1,40,40,66, 2,
21,35,29,54,37,10,29,71,12,13,27,66,28,31,12, 9,21,19,51,71,
76,46,47,75,75,49,75,75,31,69,74,25,72,28,36, 8,71,60,14,22,
67,62,68,68,27,68,68,67,67, 3,49,12,30,67, 5,65,24,66,36,66,
40,13,40, 0,14,45,64,13,24,15,26, 5,63,35,61,61,50,57,21,26,
11,59,42,27,50,57,57, 0, 1,54,53,23, 8,51,27,52,52,52,45,48,
18, 2, 2,35,75,75, 9,39, 0,26,17,43,53,47,11,65,16,21,64, 7,
38,55, 5,28,38,20,24,27,31, 9, 9,11,56,36,56,15,51,33,70,32,
5,23,63,30,53,12,58,54,36,20,74,34,70,25,65, 4,10,58,37,56,
6, 0,70,70,28,40,67,36,23,23,62,62,62, 2,34, 4,12,56, 1, 7,
4,70,65, 7,30,40,13,22, 0,18,64,13,26, 1,16,33,22,30,53,53,
7,61,40, 9,59, 7,12,46,50, 0,52,19,52,51,51,14,27,51, 5, 0,
41,53,19)
event1 = c(0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,
0,0,1,0,0,0,1,0,1,1,0,1,1,1,1,0,0,1,1,0,
1,0,0,1,1,0,0,1,0,0,0,1,0,1,0,0,1,0,1,1,
1,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,1,1,0,0,0,0,0,1,1,0,0,1,0,0,
0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,1,0,1,0,
0,0,0,1,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,1,1,0,1,0,0,0,0,1,0,0,0,0,0,
1,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,1,0,0,1,1,0,1,0,0,1,1,0,0,
1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,
0,0,1,0,1,0,0,0,0,1,1,1,1,0,0,0,1,1,0,0,
1,1,1,1,0,0,1,0,1,1,1,1,1,1,1,0,1,1,0,1,
0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,
0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,
1,0,0,0,0,0,0,1,0,0,0,0,1,0,1,0,1,0,0,1,
1,1,0,1,1,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,
0,0,0,1,0,0,0,0,1,0,0,1,0,1,0,1,1,0,1,0,
1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,
1,0,0,1,0,0,0,1,0,1,0,0,1,0,0,0,1,1,0,1,
1,1,1,0,0,0,1,0,0,0,0,0,0,0,0,1,1,0,0,0,
0,0,1)
event2 = c(0,1,1,0,0,1,0,0,0,0,0,0,0,1,1,0,1,1,0,1,
0,0,0,1,1,0,0,1,0,0,1,0,0,0,0,1,1,0,0,0,
0,0,0,0,0,0,0,0,1,1,1,0,1,0,1,1,0,1,0,0,
0,0,1,0,1,1,1,0,0,0,0,1,1,1,1,1,1,1,1,1,
1,1,1,0,1,1,1,1,1,1,0,1,0,1,0,1,0,0,0,1,
0,1,1,0,0,1,0,0,1,1,1,0,0,0,0,1,1,0,1,1,
0,1,0,0,1,1,0,0,0,1,1,0,0,1,1,1,0,1,0,0,
1,0,1,0,0,1,0,0,1,0,1,1,0,1,1,1,0,0,0,1,
0,1,1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,1,0,1,
0,0,1,1,0,1,0,1,1,1,0,1,0,0,0,0,0,0,1,0,
1,1,1,0,1,1,1,0,1,1,0,0,0,0,0,0,0,0,1,1,
0,0,0,0,1,0,1,0,1,1,1,1,0,1,1,1,0,1,1,1,
1,1,0,0,0,1,0,1,0,0,0,0,0,0,0,1,0,0,0,1,
0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,
0,0,1,0,0,1,0,0,1,0,0,1,0,1,1,0,0,1,1,1,
1,1,0,0,1,0,0,0,0,1,1,1,1,0,1,1,1,0,1,0,
1,1,1,1,1,1,0,1,1,1,1,0,0,1,0,0,1,1,1,0,
1,0,0,1,1,0,0,1,1,0,0,1,1,1,1,0,0,0,1,1,
0,1,1,1,0,0,1,0,1,1,1,1,0,1,0,0,0,1,0,0,
0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,1,0,1,0,1,
1,1,0,0,1,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,
0,1,0,0,1,1,0,1,1,1,0,0,0,1,0,1,0,0,1,1,
0,0,0,0,1,1,1,0,1,0,1,1,0,1,1,1,0,0,1,0,
0,0,0,1,0,1,0,1,0,1,0,1,0,0,0,0,0,0,1,1,
1,0,0)
library(Bivariate.Pareto)
set.seed(10)
MLE.Frank.Pareto(t.event,event1,event2,Theta = -5)
Maximum likelihood estimation for bivariate dependent competing risks data under the Frank copula with the common Pareto margins
Description
Maximum likelihood estimation for bivariate dependent competing risks data under the Frank copula with the common Pareto margins.
Usage
MLE.Frank.Pareto.com(
t.event,
event1,
event2,
Theta.0 = 1,
Alpha.0 = 1,
Gamma.0 = 1,
epsilon = 1e-05,
r.1 = 13,
r.2 = 3,
r.3 = 3,
bootstrap = FALSE,
B = 200
)
Arguments
t.event |
Vector of the observed failure times. |
event1 |
Vector of the indicators for the failure cause 1. |
event2 |
Vector of the indicators for the failure cause 2. |
Theta.0 |
Initial guess for the copula parameter |
Alpha.0 |
Initial guess for the common scale parameter |
Gamma.0 |
Initial guess for the common shape parameter |
epsilon |
Positive tunning parameter in the NR algorithm with default value |
r.1 |
Positive tunning parameter in the NR algorithm with default value 1. |
r.2 |
Positive tunning parameter in the NR algorithm with default value 1. |
r.3 |
Positive tunning parameter in the NR algorithm with default value 1. |
bootstrap |
Perform parametric bootstrap if |
B |
Number of bootstrap replications. |
Details
The parametric bootstrap method requires the assumption of the uniform censoring distribution. One must notice that such assumption is not always true in real data analysis.
Value
n |
Sample size. |
count |
Iteration number. |
random |
Randomization number. |
Theta |
Copula parameter. |
Theta.B |
Copula parameter (SE and CI are calculated by parametric bootstrap method). |
Alpha |
Common positive scale parameter for the Pareto margin. |
Alpha.B |
Common positive scale parameter for the Pareto margin (SE and CI are calculated by parametric bootstrap method). |
Gamma |
Common positive shape parameter for the Pareto margin. |
Gamma.B |
Common positive shape parameter for the Pareto margin (SE and CI are calculated by parametric bootstrap method). |
logL |
Log-likelihood value under the fitted model. |
AIC |
AIC value under the fitted model. |
BIC |
BIC value under the fitted model. |
References
Shih J-H, Lee W, Sun L-H, Emura T (2019), Fitting competing risks data to bivariate Pareto models, Communications in Statistics - Theory and Methods, 48:1193-1220.
Examples
t.event = c(72,40,20,65,24,46,62,61,60,60,59,59,49,20, 3,58,29,26,52,20,
51,51,31,42,38,69,39,33, 8,13,33, 9,21,66, 5,27, 2,20,19,60,
32,53,53,43,21,74,72,14,33, 8,10,51, 7,33, 3,43,37, 5, 6, 2,
5,64, 1,21,16,21,12,75,74,54,73,36,59, 6,58,16,19,39,26,60,
43, 7, 9,67,62,17,25, 0, 5,34,59,31,58,30,57, 5,55,55,52, 0,
51,17,70,74,74,20, 2, 8,27,23, 1,52,51, 6, 0,26,65,26, 6, 6,
68,33,67,23, 6,11, 6,57,57,29, 9,53,51, 8, 0,21,27,22,12,68,
21,68, 0, 2,14,18, 5,60,40,51,50,46,65, 9,21,27,54,52,75,30,
70,14, 0,42,12,40, 2,12,53,11,18,13,45, 8,28,67,67,24,64,26,
57,32,42,20,71,54,64,51, 1, 2, 0,54,69,68,67,66,64,63,35,62,
7,35,24,57, 1, 4,74, 0,51,36,16,32,68,17,66,65,19,41,28, 0,
46,63,60,59,46,63, 8,74,18,33,12, 1,66,28,30,57,50,39,40,24,
6,30,58,68,24,33,65, 2,64,19,15,10,12,53,51, 1,40,40,66, 2,
21,35,29,54,37,10,29,71,12,13,27,66,28,31,12, 9,21,19,51,71,
76,46,47,75,75,49,75,75,31,69,74,25,72,28,36, 8,71,60,14,22,
67,62,68,68,27,68,68,67,67, 3,49,12,30,67, 5,65,24,66,36,66,
40,13,40, 0,14,45,64,13,24,15,26, 5,63,35,61,61,50,57,21,26,
11,59,42,27,50,57,57, 0, 1,54,53,23, 8,51,27,52,52,52,45,48,
18, 2, 2,35,75,75, 9,39, 0,26,17,43,53,47,11,65,16,21,64, 7,
38,55, 5,28,38,20,24,27,31, 9, 9,11,56,36,56,15,51,33,70,32,
5,23,63,30,53,12,58,54,36,20,74,34,70,25,65, 4,10,58,37,56,
6, 0,70,70,28,40,67,36,23,23,62,62,62, 2,34, 4,12,56, 1, 7,
4,70,65, 7,30,40,13,22, 0,18,64,13,26, 1,16,33,22,30,53,53,
7,61,40, 9,59, 7,12,46,50, 0,52,19,52,51,51,14,27,51, 5, 0,
41,53,19)
event1 = c(0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,
0,0,1,0,0,0,1,0,1,1,0,1,1,1,1,0,0,1,1,0,
1,0,0,1,1,0,0,1,0,0,0,1,0,1,0,0,1,0,1,1,
1,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,1,1,0,0,0,0,0,1,1,0,0,1,0,0,
0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,1,0,1,0,
0,0,0,1,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,1,1,0,1,0,0,0,0,1,0,0,0,0,0,
1,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,1,0,0,1,1,0,1,0,0,1,1,0,0,
1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,
0,0,1,0,1,0,0,0,0,1,1,1,1,0,0,0,1,1,0,0,
1,1,1,1,0,0,1,0,1,1,1,1,1,1,1,0,1,1,0,1,
0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,
0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,
1,0,0,0,0,0,0,1,0,0,0,0,1,0,1,0,1,0,0,1,
1,1,0,1,1,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,
0,0,0,1,0,0,0,0,1,0,0,1,0,1,0,1,1,0,1,0,
1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,
1,0,0,1,0,0,0,1,0,1,0,0,1,0,0,0,1,1,0,1,
1,1,1,0,0,0,1,0,0,0,0,0,0,0,0,1,1,0,0,0,
0,0,1)
event2 = c(0,1,1,0,0,1,0,0,0,0,0,0,0,1,1,0,1,1,0,1,
0,0,0,1,1,0,0,1,0,0,1,0,0,0,0,1,1,0,0,0,
0,0,0,0,0,0,0,0,1,1,1,0,1,0,1,1,0,1,0,0,
0,0,1,0,1,1,1,0,0,0,0,1,1,1,1,1,1,1,1,1,
1,1,1,0,1,1,1,1,1,1,0,1,0,1,0,1,0,0,0,1,
0,1,1,0,0,1,0,0,1,1,1,0,0,0,0,1,1,0,1,1,
0,1,0,0,1,1,0,0,0,1,1,0,0,1,1,1,0,1,0,0,
1,0,1,0,0,1,0,0,1,0,1,1,0,1,1,1,0,0,0,1,
0,1,1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,1,0,1,
0,0,1,1,0,1,0,1,1,1,0,1,0,0,0,0,0,0,1,0,
1,1,1,0,1,1,1,0,1,1,0,0,0,0,0,0,0,0,1,1,
0,0,0,0,1,0,1,0,1,1,1,1,0,1,1,1,0,1,1,1,
1,1,0,0,0,1,0,1,0,0,0,0,0,0,0,1,0,0,0,1,
0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,
0,0,1,0,0,1,0,0,1,0,0,1,0,1,1,0,0,1,1,1,
1,1,0,0,1,0,0,0,0,1,1,1,1,0,1,1,1,0,1,0,
1,1,1,1,1,1,0,1,1,1,1,0,0,1,0,0,1,1,1,0,
1,0,0,1,1,0,0,1,1,0,0,1,1,1,1,0,0,0,1,1,
0,1,1,1,0,0,1,0,1,1,1,1,0,1,0,0,0,1,0,0,
0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,1,0,1,0,1,
1,1,0,0,1,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,
0,1,0,0,1,1,0,1,1,1,0,0,0,1,0,1,0,0,1,1,
0,0,0,0,1,1,1,0,1,0,1,1,0,1,1,1,0,0,1,0,
0,0,0,1,0,1,0,1,0,1,0,1,0,0,0,0,0,0,1,1,
1,0,0)
library(Bivariate.Pareto)
set.seed(10)
MLE.Frank.Pareto.com(t.event,event1,event2,bootstrap = FALSE)
Maximum likelihood estimation for bivariate dependent competing risks data under the SNBP distribution
Description
Maximum likelihood estimation for bivariate dependent competing risks data under the SNBP distribution (Sankaran and Nair, 1993).
Usage
MLE.SN.Pareto(
t.event,
event1,
event2,
Alpha0,
Alpha1.0 = 1,
Alpha2.0 = 1,
Gamma.0 = 1,
epsilon = 1e-05,
d = exp(10),
r.1 = 6,
r.2 = 6,
r.3 = 6
)
Arguments
t.event |
Vector of the observed failure times. |
event1 |
Vector of the indicators for the failure cause 1. |
event2 |
Vector of the indicators for the failure cause 2. |
Alpha0 |
Copula parameter |
Alpha1.0 |
Initial guess for the scale parameter |
Alpha2.0 |
Initial guess for the scale parameter |
Gamma.0 |
Initial guess for the common shape parameter |
epsilon |
Positive tunning parameter in the NR algorithm with default value |
d |
Positive tunning parameter in the NR algorithm with default value |
r.1 |
Positive tunning parameter in the NR algorithm with default value 1. |
r.2 |
Positive tunning parameter in the NR algorithm with default value 1. |
r.3 |
Positive tunning parameter in the NR algorithm with default value 1. |
Details
The admissible range of Alpha0
(\alpha_{0}
) is 0 \leq \alpha_{0} \leq (\gamma+1) \alpha_{1} \alpha_{2}.
To adapt our functions to dependent censoring models in Emura and Chen (2018), one can simply set event2
= 1-event1
.
Value
n |
Sample size. |
count |
Iteration number. |
random |
Randomization number. |
Alpha1 |
Positive scale parameter for the Pareto margin (failure cause 1). |
Alpha2 |
Positive scale parameter for the Pareto margin (failure cause 2). |
Gamma |
Common positive shape parameter for the Pareto margins. |
MedX |
Median lifetime due to failure cause 1. |
MedY |
Median lifetime due to failure cause 2. |
MeanX |
Mean lifetime due to failure cause 1. |
MeanY |
Mean lifetime due to failure cause 2. |
logL |
Log-likelihood value under the fitted model. |
AIC |
AIC value under the fitted model. |
BIC |
BIC value under the fitted model. |
References
Sankaran PG, Nair NU (1993), A bivariate Pareto model and its applications to reliability, Naval Research Logistics, 40(7): 1013-1020.
Emura T, Chen Y-H (2018) Analysis of Survival Data with Dependent Censoring, Copula-Based Approaches, JSS Research Series in Statistics, Springer, Singapore.
Shih J-H, Lee W, Sun L-H, Emura T (2019), Fitting competing risks data to bivariate Pareto models, Communications in Statistics - Theory and Methods, 48:1193-1220.
Examples
t.event = c(72,40,20,65,24,46,62,61,60,60,59,59,49,20, 3,58,29,26,52,20,
51,51,31,42,38,69,39,33, 8,13,33, 9,21,66, 5,27, 2,20,19,60,
32,53,53,43,21,74,72,14,33, 8,10,51, 7,33, 3,43,37, 5, 6, 2,
5,64, 1,21,16,21,12,75,74,54,73,36,59, 6,58,16,19,39,26,60,
43, 7, 9,67,62,17,25, 0, 5,34,59,31,58,30,57, 5,55,55,52, 0,
51,17,70,74,74,20, 2, 8,27,23, 1,52,51, 6, 0,26,65,26, 6, 6,
68,33,67,23, 6,11, 6,57,57,29, 9,53,51, 8, 0,21,27,22,12,68,
21,68, 0, 2,14,18, 5,60,40,51,50,46,65, 9,21,27,54,52,75,30,
70,14, 0,42,12,40, 2,12,53,11,18,13,45, 8,28,67,67,24,64,26,
57,32,42,20,71,54,64,51, 1, 2, 0,54,69,68,67,66,64,63,35,62,
7,35,24,57, 1, 4,74, 0,51,36,16,32,68,17,66,65,19,41,28, 0,
46,63,60,59,46,63, 8,74,18,33,12, 1,66,28,30,57,50,39,40,24,
6,30,58,68,24,33,65, 2,64,19,15,10,12,53,51, 1,40,40,66, 2,
21,35,29,54,37,10,29,71,12,13,27,66,28,31,12, 9,21,19,51,71,
76,46,47,75,75,49,75,75,31,69,74,25,72,28,36, 8,71,60,14,22,
67,62,68,68,27,68,68,67,67, 3,49,12,30,67, 5,65,24,66,36,66,
40,13,40, 0,14,45,64,13,24,15,26, 5,63,35,61,61,50,57,21,26,
11,59,42,27,50,57,57, 0, 1,54,53,23, 8,51,27,52,52,52,45,48,
18, 2, 2,35,75,75, 9,39, 0,26,17,43,53,47,11,65,16,21,64, 7,
38,55, 5,28,38,20,24,27,31, 9, 9,11,56,36,56,15,51,33,70,32,
5,23,63,30,53,12,58,54,36,20,74,34,70,25,65, 4,10,58,37,56,
6, 0,70,70,28,40,67,36,23,23,62,62,62, 2,34, 4,12,56, 1, 7,
4,70,65, 7,30,40,13,22, 0,18,64,13,26, 1,16,33,22,30,53,53,
7,61,40, 9,59, 7,12,46,50, 0,52,19,52,51,51,14,27,51, 5, 0,
41,53,19)
event1 = c(0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,
0,0,1,0,0,0,1,0,1,1,0,1,1,1,1,0,0,1,1,0,
1,0,0,1,1,0,0,1,0,0,0,1,0,1,0,0,1,0,1,1,
1,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,1,1,0,0,0,0,0,1,1,0,0,1,0,0,
0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,1,0,1,0,
0,0,0,1,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,1,1,0,1,0,0,0,0,1,0,0,0,0,0,
1,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,1,0,0,1,1,0,1,0,0,1,1,0,0,
1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,
0,0,1,0,1,0,0,0,0,1,1,1,1,0,0,0,1,1,0,0,
1,1,1,1,0,0,1,0,1,1,1,1,1,1,1,0,1,1,0,1,
0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,
0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,
1,0,0,0,0,0,0,1,0,0,0,0,1,0,1,0,1,0,0,1,
1,1,0,1,1,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,
0,0,0,1,0,0,0,0,1,0,0,1,0,1,0,1,1,0,1,0,
1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,
1,0,0,1,0,0,0,1,0,1,0,0,1,0,0,0,1,1,0,1,
1,1,1,0,0,0,1,0,0,0,0,0,0,0,0,1,1,0,0,0,
0,0,1)
event2 = c(0,1,1,0,0,1,0,0,0,0,0,0,0,1,1,0,1,1,0,1,
0,0,0,1,1,0,0,1,0,0,1,0,0,0,0,1,1,0,0,0,
0,0,0,0,0,0,0,0,1,1,1,0,1,0,1,1,0,1,0,0,
0,0,1,0,1,1,1,0,0,0,0,1,1,1,1,1,1,1,1,1,
1,1,1,0,1,1,1,1,1,1,0,1,0,1,0,1,0,0,0,1,
0,1,1,0,0,1,0,0,1,1,1,0,0,0,0,1,1,0,1,1,
0,1,0,0,1,1,0,0,0,1,1,0,0,1,1,1,0,1,0,0,
1,0,1,0,0,1,0,0,1,0,1,1,0,1,1,1,0,0,0,1,
0,1,1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,1,0,1,
0,0,1,1,0,1,0,1,1,1,0,1,0,0,0,0,0,0,1,0,
1,1,1,0,1,1,1,0,1,1,0,0,0,0,0,0,0,0,1,1,
0,0,0,0,1,0,1,0,1,1,1,1,0,1,1,1,0,1,1,1,
1,1,0,0,0,1,0,1,0,0,0,0,0,0,0,1,0,0,0,1,
0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,
0,0,1,0,0,1,0,0,1,0,0,1,0,1,1,0,0,1,1,1,
1,1,0,0,1,0,0,0,0,1,1,1,1,0,1,1,1,0,1,0,
1,1,1,1,1,1,0,1,1,1,1,0,0,1,0,0,1,1,1,0,
1,0,0,1,1,0,0,1,1,0,0,1,1,1,1,0,0,0,1,1,
0,1,1,1,0,0,1,0,1,1,1,1,0,1,0,0,0,1,0,0,
0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,1,0,1,0,1,
1,1,0,0,1,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,
0,1,0,0,1,1,0,1,1,1,0,0,0,1,0,1,0,0,1,1,
0,0,0,0,1,1,1,0,1,0,1,1,0,1,1,1,0,0,1,0,
0,0,0,1,0,1,0,1,0,1,0,1,0,0,0,0,0,0,1,1,
1,0,0)
library(Bivariate.Pareto)
set.seed(10)
MLE.SN.Pareto(t.event,event1,event2,Alpha0 = 7e-5)
Generate samples from the SNBP distribution
Description
Generate samples from the Sankaran and Nair bivairate Pareto (SNBP) distribution (Sankaran and Nair, 1993).
Usage
SN.Pareto(n, Alpha0, Alpha1, Alpha2, Gamma)
Arguments
n |
Sample size. |
Alpha0 |
Copula parameter |
Alpha1 |
Positive scale parameter |
Alpha2 |
Positive scale parameter |
Gamma |
Common positive shape parameter |
Details
The admissible range of Alpha0
(\alpha_{0}
) is 0 \leq \alpha_{0} \leq (\gamma+1) \alpha_{1} \alpha_{2}.
Value
X |
|
Y |
|
References
Sankaran PG, Nair NU (1993), A bivariate Pareto model and its applications to reliability, Naval Research Logistics, 40(7): 1013-1020.
Shih J-H, Lee W, Sun L-H, Emura T (2019), Fitting competing risks data to bivariate Pareto models, Communications in Statistics - Theory and Methods, 48:1193-1220.
Examples
library(Bivariate.Pareto)
SN.Pareto(5,2,1,1,1)