Package ‘SHARK4R’

January 14, 2026

Title Accessing and Validating Marine Environmental Data from 'SHARK'
and Related Databases

Version 1.0.3

Description Provides functions to retrieve, process, analyze, and
quality-control marine physical, chemical, and biological data. The
main focus is on Swedish monitoring data available through the 'SHARK'
database <https://shark.smhi.se/en/>, with additional API support for 'Nordic
Microalgae' <https://nordicmicroalgae.org/>, 'Dyntaxa’
<https://artfakta.se/>, World Register of Marine Species (WoRMS') <https:
//www.marinespecies.org>,
'AlgaeBase’ <https://www.algaebase.org>, OBIS 'xylookup' web service
<https:
//iobis.github.io/xylookup/> and Intergovernmental Oceanographic Commission (IOC) -
UNESCO databases on harmful algae <https://www.marinespecies.org/hab/> and toxins
<https://toxins.hais.ioc-unesco.org/>.

License MIT + file LICENSE

URL https://sharksmhi.github.io/SHARK4R/,
https://github.com/sharksmhi/SHARK4R

BugReports https://github.com/sharksmhi/SHARK4R/issues
Depends R (>=4.1.0)

Imports dplyr, DT, ggplot2, httr, jsonlite, leaflet, lifecycle, purrr,
readr, readxl, rlang, sf, sp, stringi, terra, tidyr, vroom,
worrms

Suggests htmltools, iRfcb, knitr, plotly, RColorBrewer, rmarkdown,
skimr, spelling, shiny, shinythemes, testthat (>= 3.0.0)

VignetteBuilder knitr
Config/testthat/edition 3
Encoding UTF-8
Language en-US
RoxygenNote 7.3.3

NeedsCompilation no

https://shark.smhi.se/en/
https://nordicmicroalgae.org/
https://artfakta.se/
https://www.marinespecies.org
https://www.marinespecies.org
https://www.algaebase.org
https://iobis.github.io/xylookup/
https://iobis.github.io/xylookup/
https://www.marinespecies.org/hab/
https://toxins.hais.ioc-unesco.org/
https://sharksmhi.github.io/SHARK4R/
https://github.com/sharksmhi/SHARK4R
https://github.com/sharksmhi/SHARK4R/issues

Author Markus Lindh [aut] (Swedish Meteorological and Hydrological Institute,

ORCID: <https://orcid.org/0000-0002-7120-4145>),

Anders Torstensson [aut, cre] (Swedish Meteorological and Hydrological
Institute, ORCID: <https://orcid.org/0000-0002-8283-656X>),

Mikael Hedblom [ctb] (Swedish Meteorological and Hydrological
Institute, ORCID: <https://orcid.org/0009-0007-5124-9956>),

Bengt Karlson [ctb] (Swedish Meteorological and Hydrological Institute,
ORCID: <https://orcid.org/0000-0002-7524-3504>),

SHARK [cph],

SBDI [fnd] (Swedish Research Council, 2019-00242)

Maintainer Anders Torstensson <anders.torstensson@smhi.se>
Repository CRAN
Date/Publication 2026-01-14 08:20:11 UTC

Contents

add_worms_taxonomy o u e e e e e e e
assign_phytoplankton_group L Lo
check_codes e
check_datatype
check_depth
check_fields
check_logical_parameter
check_nominal_station
check onland
check outliers e
check_parameter_rules
check_setup
check_station_distance e
check_value_logical
check_zero_positions
check _zero_value
clean_sharkdr_cacheo
construct_dyntaxa_table
convert._ ddmm_to_dd
find_required_fields L o
get_delivery_template
get_dyntaxa_dwca
get_dyntaxa_parent_ids oL
get_dyntaxa_records
get_hab_list
get_nomp_list
get_nua_external_links oo
get_nua_harmfulness o
get_nua_media_links
get_nua_taXxa e e e
get_peg_list

Contents

https://orcid.org/0000-0002-7120-4145
https://orcid.org/0000-0002-8283-656X
https://orcid.org/0009-0007-5124-9956
https://orcid.org/0000-0002-7524-3504

add_worms_taxonomy 3

get_shark_codes. 49
get_shark_data 50
get_shark_datasets 54
get_shark_options 56
get_shark_statistics L 57
get_shark_table_counts L 59
get_toxin_list 62
get_worms_classification 63
get_worms_records e 64
get_WOImS_taXONOMY_II€€ « . v v v v it e et e e et e e e e e 66
is_in_dyntaxa e 68
load_sharkdr_fields e 69
load_sharkdr_stats e e 71
lookup_Xy . . . o e e 72
match_algaebase_genus 73
match_algaebase_species 75
match_algaebase_taxa L 77
match_dyntaxa_taxao e e e e e 79
match_Station e e e e e e e 81
match_ WOrms_taxa v v v v e e e e e e e e e e e e 82
parse_scientific_names 84
plot_map_leaflet 86
positions_are_near_lando Lo 87
read_ptbx 89
read_shark L e 90
read_shark_deliv e 91
TUN_QC_APP -« « v v o e 92
scatterplot L L. 93
translate_shark_datatype 95
update_dyntaxa_taXOnomy o vttt e e 95
which_basin e e e 97
Index 99
add_worms_taxonomy Add WoRMS taxonomy hierarchy to AphialDs or scientific names
Description

This function enhances a dataset of AphialDs (and optionally scientific names) with their complete
hierarchical taxonomy from the World Register of Marine Species (WoRMS). Missing AphialDs
can be resolved from scientific names automatically.

4 add_worms_taxonomy

Usage

add_worms_taxonomy (
aphia_ids,
scientific_names = NULL,
add_rank_to_hierarchy = FALSE,
verbose = TRUE,
aphia_id = deprecated(),
scientific_name = deprecated()

Arguments

aphia_ids Numeric vector of AphialDs.

scientific_names
Optional character vector of scientific names (same length as aphia_id).

add_rank_to_hierarchy
Logical (default FALSE). If TRUE, includes rank labels in the concatenated
hierarchy string.

verbose Logical (default TRUE). If TRUE, prints progress updates.
aphia_id [Deprecated] Use aphia_ids instead.

scientific_name
[Deprecated] Use scientific_names instead.

Value

A tibble with taxonomy columns added, including:

e aphia_id, scientific_name
e worms_kingdom, worms_phylum, worms_class, worms_order, worms_family, worms_genus,

worms_species

e worms_scientific_name, worms_hierarchy

Examples

Using AphiaID only
add_worms_taxonomy(c(1080, 109604), verbose = FALSE)

Using a combination of AphialD and scientific name
add_worms_taxonomy (
aphia_ids = c(NA, 109604),
scientific_names = c("”Calanus finmarchicus”, "Oithona similis"),
verbose = FALSE

assign_phytoplankton_group 5

assign_phytoplankton_group
Assign phytoplankton group to scientific names

Description

This function assigns default phytoplankton groups (Diatoms, Dinoflagellates, Cyanobacteria, or
Other) to a list of scientific names or Aphia IDs by retrieving species information from the World
Register of Marine Species (WoRMS). The function checks both Aphia IDs and scientific names,
handles missing records, and assigns the appropriate plankton group based on taxonomic classifica-
tion in WoRMS. Additionally, custom plankton groups can be specified using the custom_groups
parameter, allowing users to define additional classifications based on specific taxonomic criteria.

Usage

assign_phytoplankton_group(
scientific_names,
aphia_ids = NULL,

diatom_class = c("Bacillariophyceae”, "Coscinodiscophyceae"”, "Mediophyceae”,
"Diatomophyceae”),

dinoflagellate_class = "Dinophyceae”,

cyanobacteria_class = "Cyanophyceae”,

cyanobacteria_phylum = "Cyanobacteria”,

match_first_word = TRUE,
marine_only = FALSE,
return_class = FALSE,
custom_groups = list(),
verbose = TRUE

Arguments

scientific_names
A character vector of scientific names of marine species.

aphia_ids A numeric vector of Aphia IDs corresponding to the scientific names. If pro-
vided, it improves the accuracy and speed of the matching process. The length
of aphia_ids must match the length of scientific_names. Defaults to NULL,
in which case the function will attempt to assign plankton groups based only on
the scientific names.

diatom_class A character string or vector representing the diatom class. Default is "Bacillar-
iophyceae", "Coscinodiscophyceae", "Mediophyceae" and "Diatomophyceae".

dinoflagellate_class
A character string or vector representing the dinoflagellate class. Default is
"Dinophyceae".

cyanobacteria_class
A character string or vector representing the cyanobacteria class. Default is
"Cyanophyceae".

6 assign_phytoplankton_group

cyanobacteria_phylum
A character string or vector representing the cyanobacteria phylum. Default is
"Cyanobacteria".

match_first_word

A logical value indicating whether to match the first word of the scientific name
if the Aphia ID is missing. Default is TRUE.

marine_only A logical value indicating whether to restrict the results to marine taxa only.
Default is FALSE.

return_class A logical value indicating whether to include class information in the result.
Default is FALSE.

custom_groups A named list of additional custom plankton groups (optional). The names of the
list correspond to the custom group names (e.g., "Cryptophytes"), and the values
should be character vectors specifying one or more of the following taxonomic
levels: phylum, class, order, family, genus, or scientific_name. For exam-
ple: list("Green Algae” = list(class = c("Chlorophyceae”, "Ulvophyceae"))).
This allows users to extend the default classifications (e.g., Cyanobacteria, Di-
atoms, Dinoflagellates) with their own groups.

verbose A logical value indicating whether to print progress messages. Default is TRUE.

Details

The aphia_ids parameter is not necessary but, if provided, will improve the certainty of the match-
ing process. If aphia_ids are available, they will be used directly to retrieve more accurate WoRMS
records. If missing, the function will attempt to match the scientific names to Aphia IDs by query-
ing WoRMS using the scientific name(s), with an additional fallback mechanism to match based on
the first word of the scientific name.

To skip one of the default plankton groups, you can set the class or phylum of the respective
group to an empty string (""). For example, to skip the "Cyanobacteria" group, you can set
cyanobacteria_class ="" or cyanobacteria_phylum="". These taxa will then be placed in
Others.

nn

Custom groups are processed in the order they appear in the custom_groups list. If a taxon matches
multiple custom groups, it will be assigned to the group that appears last in the list, as later matches
overwrite earlier ones. For example, if Teleaulax amphioxeia matches both Cryptophytes
(class-based) and a specific group Teleaulax (name-based), it will be assigned to Teleaulax if
Teleaulax is listed after Cryptophytes in the custom_groups list.

Value
A tibble with two columns: scientific_name and plankton_group, where the plankton group
is assigned based on taxonomic classification.

See Also

https://marinespecies.org/ for WoRMS website.
https://CRAN.R-project.org/package=worrms

https://marinespecies.org/
https://CRAN.R-project.org/package=worrms

check codes 7

Examples

Assign plankton groups to a list of species names

result <- assign_phytoplankton_group(
scientific_names = c("Tripos fusus”, "Diatoma”, "Nodularia spumigena”, "Octactis speculum”),
verbose = FALSE)

print(result)

Improve classification by explicitly providing Aphia IDs for ambiguous taxa

Actinocyclus and Navicula are names shared by both diatoms and animals,

which can lead to incorrect group assignment without an Aphia ID

result <- assign_phytoplankton_group(
scientific_names = c("Actinocyclus”, "Navicula”, "Nodularia spumigena”, "Tripos fusus”),
aphia_ids = c(148944, 149142, NA, NA),
verbose = FALSE)

print(result)

Assign plankton groups using additional custom grouping
custom_groups <- list(
Cryptophytes = list(class = "Cryptophyceae”),
Ciliates = list(phylum = "Ciliophora")
)

Assign with custom groups
result_custom <- assign_phytoplankton_group(

scientific_names = c("Teleaulax amphioxeia"”, "Mesodinium rubrum”, "Dinophysis acuta"),
aphia_ids = c(106306, 232069, 109604),

custom_groups = custom_groups, # Adding custom groups

verbose = FALSE

print(result_custom)

check_codes Check matches of reported codes in SMHI’s SHARK codelist

Description

This function checks whether the codes reported in a specified column of a dataset (e.g., project
codes, ship codes, etc.) are present in the official SHARK codelist provided by SMHI. If a cell
contains multiple codes separated by commas, each code is checked individually. The function
downloads and caches the codelist if necessary, compares the reported values against the valid
codes, and returns a tibble showing which codes matched. Informative messages are printed if
unmatched codes are found.

8 check_datatype

Usage

check_codes(
data,
field = "sample_project_name_en",
code_type = "PROJ",
match_column = "Description/English translate”,
clean_cache_days = 30,
verbose = TRUE

)
Arguments
data A tibble (or data.frame) containing the codes to check.
field Character; name of the column in data that contains the codes to be validated
against the SHARK codelist. If a cell contains multiple codes separated by com-
mas, each code is validated separately. Default is "sample_project_name_en".
code_type Character; the type of code to check (e.g., "PR0J"). Defaults to "PROJ".

match_column Character; the column in the SHARK codelist to match against. Must be one of
"Code" or "Description/English translate”. Defaults to "Description/English
translate”.

clean_cache_days
Numeric; if not NULL, cached SHARK code Excel files older than this number
of days will be automatically deleted and replaced by a new download. Defaults
to 30. Set to NULL to disable automatic cleanup.

verbose Logical. If TRUE, messages will be displayed during execution. Defaults to
TRUE.
Value
A tibble with unique reported codes (after splitting comma-separated entries) and a logical column
match_type indicating if they exist in the SHARK codelist.
See Also

get_shark_codes() to get the current code list.

clean_shark4r_cache() to manually clear cached files.

check_datatype Validate SHARK system fields in a data frame

Description

This function checks whether the required and recommended global and datatype-specific SHARK
system fields are present in a data frame.

check_depth 9

Usage

check_datatype(data, level = "error")

Arguments
data A data.frame or tibble containing SHARK data to validate.
level Character. The level of validation:
e "error” (default) — checks only required fields.
* "warning"” — checks both required and recommended fields.
Details

* Required fields: Missing or empty required fields are reported as errors.

* Recommended fields: Missing or empty recommended fields are reported as warnings, but
only if level = "warning” is specified.

Value
A tibble summarizing missing or empty fields, with columns:

e level: "error" or "warning".
e field: Name of the missing or empty field.
* row: Row number where the value is missing (NA) or NA if the whole column is missing.

* message: Description of the issue.

Examples

Example with required fields missing
df <- data.frame(

visit_year = 2024,

station_name = NA

)
check_datatype(df, level = "error")

Example checking recommended fields as warnings
check_datatype(df, level = "warning”)

check_depth Validate depth values against bathymetry and logical constraints

Description

check_depth() inspects one or two depth columns in a dataset and reports potential problems
such as missing values, non-numeric entries, or values that conflict with bathymetry and shoreline
information. It can also validate depths against bathymetry data retrieved from a terra::SpatRaster
object or, if bathymetry = NULL, via the lookup_xy() function, which calls the OBIS XY lookup
API to obtain bathymetry (using EMODnet Bathymetry) and shore distance.

10 check_depth

Usage

check_depth(
data,
depth_cols = c("sample_min_depth_m", "sample_max_depth_m"),
lat_col = "sample_latitude_dd",
lon_col = "sample_longitude_dd",
report = TRUE,
depthmargin = 0,
shoremargin = NA,
bathymetry = NULL

)
Arguments
data A data frame containing sample metadata, including longitude, latitude, and one
or two depth columns.
depth_cols Character vector naming the depth column(s). Can be one column (e.g., "water_depth_m")
or two columns (minimum and maximum depth, e.g., c("sample_min_depth_m",
"sample_max_depth_m")).
lat_col Name of the column containing latitude values. Default: "sample_latitude_dd".
lon_col Name of the column containing longitude values. Default: "sample_longitude_dd".
report Logical. If TRUE (default), returns a tibble of detected problems. If FALSE,
returns the subset of input rows that failed validation.
depthmargin Numeric. Allowed deviation (in meters) above bathymetry before a depth is
flagged as an error. Default = 0.
shoremargin Numeric. Minimum offshore distance (in meters) required for negative depths
to be considered valid. If NA (default), this check is skipped.
bathymetry Optional terra::SpatRaster object with one layer giving bathymetry values. If
NULL (default), bathymetry and shore distance are retrieved using lookup_xy (),
which calls the OBIS XY lookup API.
Details

The following checks are performed:

Missing depth column — warning

Empty depth column (all values missing) — warning

Non-numeric depth values — warning

Depth exceeds bathymetry + margin (depthmargin) — warning

Negative depth at offshore locations (beyond shoremargin) — warning
Minimum depth greater than maximum depth (if two columns supplied) — error

Longitude/latitude outside raster bounds — warning

® 2ok LD =

Missing bathymetry value at coordinate — warning

The function has been modified from the obistools package (Provoost and Bosch, 2024).

check_depth 11

Value

A tibble with one row per detected problem, containing:

level Severity of the issue ("warning" or "error").
row Row index in the input data where the issue occurred.
field Name of the column(s) involved.

message Human-readable description of the problem.

If report = FALSE, returns the subset of input rows that failed any check.

References

Provoost P, Bosch S (2024). “obistools: Tools for data enhancement and quality control” Ocean
Biodiversity Information System. Intergovernmental Oceanographic Commission of UNESCO. R
package version 0.1.0, https://iobis.github.io/obistools/.

See Also

lookup_xy, check_onland

Examples

Example dataset with one depth column

example_data <- data.frame(
sample_latitude_dd = c¢(59.3, 58.1, 57.5),
sample_longitude_dd = c(18.0, 17.5, 16.2),
sample_depth_m = c(10, -5, NA)

)

Validate depths using OBIS XY lookup (bathymetry = NULL)
check_depth(example_data, depth_cols = "sample_depth_m")

Example dataset with min/max depth columns

example_data2 <- data.frame(
sample_latitude_dd = c(59.0, 58.5),
sample_longitude_dd = c(18.0, 17.5),
sample_min_depth_m = c(5, 15),
sample_max_depth_m = c(3, 20)

)

check_depth(example_data2, depth_cols = c("sample_min_depth_m", "sample_max_depth_m"))

Return only failing rows
check_depth(example_data, depth_cols = "sample_depth_m", report = FALSE)

https://iobis.github.io/obistools/

12 check_fields

check_fields Validate SHARK data fields for a given datatype

Description

This function checks a SHARK data frame against the required and recommended fields defined for
a specific datatype. It verifies that all required fields are present and contain non-empty values. If
level = "warning"”, it also checks for recommended fields and empty values within them.

Usage
check_fields(
data,
datatype,
level = "error”,
stars = 1,
bacterioplankton_subtype = "abundance",
field_definitions = .field_definitions
)
Arguments
data A data frame containing SHARK data to be validated.
datatype A string giving the SHARK datatype to validate against. Must exist as a name
in the provided field_definitions.
level Character string, either "error” or "warning”. If "error”, only required fields
are validated. If "warning”, recommended fields are also checked and reported
as warnings.
stars Integer. Maximum number of "" levels to include. Default = 1 (only single).
For example, stars = 2 includes """ and "**", stars =3 includes "", """, and

1n
bacterioplankton_subtype
Character. For "Bacterioplankton" only: either "abundance" (default) or "pro-
duction". Ignored for other datatypes.
field_definitions
A named list of field definitions. Each element should contain two charac-
ter vectors: required and recommended. Defaults to the package’s built-in
SHARK4R: : : .field_definitions. Alternatively, the latest definitions can be
loaded directly from the official SHARK4R GitHub repository using load_shark4r_fields().

Details

Note: A single "*" marks required fields in the standard SHARK template. A double "**" is
often used to specify columns required for national monitoring only. For more information, see:
https://www.smbhi.se/data/hav-och-havsmiljo/datavardskap-oceanografi-och-marinbiologi/leverera-data

Field definitions for SHARK data can be loaded in two ways:

check_fields 13

1. From the SHARK4R package bundle (default): The package contains a built-in object,
.field_definitions, which stores required and recommended fields for each datatype.

2. From GitHub (latest official version): To use the most up-to-date field definitions, you can
load them directly from the SHARK4R-statistics repository:

defs <- load_shark4r_fields()
check_fields(my_data, "Phytoplankton”", field_definitions = defs)

Delivery-format (all-caps) data: If the column names in data are all uppercase (e.g. SDATE),
check_fields() assumes the dataset follows the official SHARK delivery template. In this case:

» Required fields are determined from the delivery template using get_delivery_template()
and find_required_fields().
* Recommended fields are ignored because the delivery templates do not define them.
* The function validates that all required columns exist and contain non-empty values.
This ensures that both internal SHARK4R datasets (with camelCase or snake_case columns) and offi-
cial delivery files (ALL_CAPS columns) are validated correctly using the appropriate rules.
Stars in the template

Leading asterisks in the delivery template indicate required levels:

* *=gtandard required column
* * = required for national monitoring

* Other symbols = additional requirement level

The stars parameter in check_fields() controls how many levels of required columns to include.

Value
A tibble with the following columns:
level Either "error” or "warning".
field The name of the field that triggered the check.

row Row number(s) in data where the issue occurred, or NA if the whole field is missing.

message A descriptive message explaining the problem.

The tibble will be empty if no problems are found.

See Also

load_shark4r_fields for fetching the latest field definitions from GitHub, get_delivery_template
for downloading delivery templates from SMHI’s website.

https://github.com/nodc-sweden/SHARK4R-statistics

14 check_logical_parameter

Examples

Example 1: Using built-in field definitions for "Phytoplankton”
df_phyto <- data.frame(

visit_date = "2023-06-01",

sample_id = "S1",

scientific_name = "Skeletonema marinoi”,

value = 123
)

Check fields
check_fields(df_phyto, "Phytoplankton”, level = "warning")

Example 2: Load latest definitions from GitHub and use them
defs <- load_shark4r_fields(verbose = FALSE)

Check fields using loaded field definitions
check_fields(df_phyto, "Phytoplankton”, field_definitions = defs)

Example 3: Custom datatype with required + recommended fields
defs <- list(
ExampleType = list(
required = c("id", "value"),
recommended = "comment”
)
)

Example data
df_ok <- data.frame(id = 1, value = "x", comment = "ok")

Check fields using custom field definitions
check_fields(df_ok, "ExampleType", level = "warning”, field_definitions = defs)

check_logical_parameter
General checker for parameter-specific logical rules

Description

This function checks for logical rule violations in benthos/epibenthos data by applying a user-
defined condition to values for a given parameter. It is intended to replace the old family of
check_*_x_logical () functions.

Usage

check_logical_parameter(
data,

check_logical_parameter 15

param_name,
condition,

return_df = FALSE,
return_logical = FALSE

)
Arguments
data A data frame. Must contain columns parameter and value.
param_name Character; the name of the parameter to check.
condition A function that takes a numeric vector of values and returns a logical vector
(TRUE for rows considered problematic).
return_df Logical. If TRUE, return a plain data.frame of problematic rows.

return_logical Logical. If TRUE, return a logical vector of length nrow(data). Overrides re-

Value

turn_df.

A DT datatable, a data.frame, a logical vector, or NULL if no problems found.

Examples

Example dataset
df <- dplyr::tibble(

)

station_name = c("A1", "A2", "A3", "A4"),

sample_date = as.Date("2023-05-01") + 0:3,

sample_id = 101:104,

parameter = c("Biomass"”, "Biomass”, "Abundance”, "Biomass"),
value = c(5, -2, 10, 0)

1. Check that Biomass is never negative
check_logical_parameter(df, "Biomass”, function(x) x < @, return_df = TRUE)

2. Same check, but return problematic rows as a data frame
check_logical_parameter(df, "Biomass”, function(x) x < @, return_df = TRUE)

3. Return logical vector marking problematic rows
check_logical_parameter(df, "Biomass”, function(x) x < @, return_logical = TRUE)

4. Check that Abundance is not zero (no problems found -> returns NULL)
abundance_check <- check_logical_parameter(df, "Abundance", function(x) x == @)
print(abundance_check)

16 check _nominal_station

check_nominal_station Check if stations are reported as nominal positions

Description

This function attempts to determine whether stations in a dataset are reported using nominal posi-
tions (i.e., generic or repeated coordinates across events), rather than actual measured coordinates.

Usage

check_nominal_station(data, verbose = TRUE)

Arguments
data A data frame containing at least the columns: sample_date, station_name,
sample_longitude_dd, and sample_latitude_dd.
verbose Logical. If TRUE, messages will be displayed during execution. Defaults to
TRUE.
Details

The function compares the number of unique sampling dates with the number of unique station
coordinates.

If the number of unique sampling dates is larger than the number of unique station coordinates, the
function suspects nominal station positions and issues a warning.

Value

A data frame with distinct station names and their corresponding latitude/longitude positions, if
nominal positions are suspected. Otherwise, returns NULL.

Examples

df <- data.frame(
sample_date = rep(seq.Date(Sys.Date(), by = "day"”, length.out = 3), each = 2),
station_name = rep(c("”ST1", "ST2"), 3),
sample_longitude_dd = rep(c(15.0, 16.0), 3),
sample_latitude_dd = rep(c(58.5, 58.6), 3)
)

check_nominal_station(df)

check onland

17

check_onland Check whether points are located on land

Description

Identifies records whose coordinates fall on land, optionally applying a buffer to allow points near

the coast.

Usage

check_onland(

data,

land =
report
buffer

offline

NULL,
= FALSE,
0,

= FALSE,

plot_leaflet = FALSE,
only_bad = FALSE

Arguments

data

land

report

buffer

offline

A data frame containing at least sample_longitude_dd and sample_latitude_dd.
Both columns must be numeric, within valid ranges (longitude: -180 to 180, lat-
itude: -90 to 90), and use WGS84 coordinates (EPSG:4326).

Optional sf object containing land polygons. Used only in offline mode.

Logical; if TRUE, returns a tibble listing rows on land and warnings. If FALSE
(default), returns a subset of data containing only records on land.

Numeric; distance in meters inland for which points are still considered valid.
Only used in online mode. Default is 0.

Logical; if TRUE, the function uses the local cached shoreline (if available). If
FALSE (default), the OBIS web service is queried.

plot_leaflet Logical; if TRUE, returns a leaflet map showing points colored by whether they

only_bad

Details

are on land (red) or in water (green). Default is FALSE.

Logical; if TRUE and plot_leaflet = TRUE, only points on land (red) are plot-
ted. Default is FALSE, meaning all points are plotted.

The function supports both offline and online modes:

» Offline mode (offline = TRUE): uses a local simplified shoreline from a cached geopackage
(land. gpkg). If the file does not exist, it is downloaded automatically and cached across R
sessions.

¢ Online mode (offline = FALSE): uses the OBIS web service to determine distance to the
shore.

18 check outliers

The function assumes all coordinates are in WGS84 (EPSG:4326). Supplying coordinates in a
different CRS will result in incorrect intersection tests.

Optionally, a leaflet map can be plotted. Points on land are displayed as red markers, while points
in water are green. If only_bad = TRUE, only the red points (on land) are plotted.

Value

If report = TRUE, a tibble with columns:

» field: always NA (placeholder for future extension)
* level: "warning” for all flagged rows
* row: row numbers in data flagged as located on land

* message: description of the issue

If report = FALSE and plot_leaflet = FALSE, returns a subset of data with only the flagged rows.
If plot_leaflet = TRUE, returns a leaflet map showing points on land (red) and in water (green),
unless only_bad = TRUE, in which case only red points are plotted.

Examples

Example data frame with coordinates
example_data <- data.frame(
sample_latitude_dd = c¢(59.3, 58.1, 57.5),
sample_longitude_dd = c(18.6, 17.5, 16.7)
)

Report points on land with a 100 m buffer
report <- check_onland(example_data, report = TRUE, buffer = 100)
print(report)

Plot all points colored by land/water
map <- check_onland(example_data, plot_leaflet = TRUE)

Plot only bad points on land
map_bad <- check_onland(example_data, plot_leaflet = TRUE, only_bad = TRUE)

Remove points on land by adding a buffer of 2000 m
ok <- check_onland(example_data, report = FALSE, buffer = 2000)
print(nrow(ok))

check_outliers General outlier check function for SHARK data

check_outliers 19

Description

This function checks whether values for a specified parameter exceed a predefined threshold. Thresh-
olds are provided in a dataframe (default . threshold_values), which should contain columns for
parameter, datatype, and at least one numeric threshold column (e.g., extreme_upper). Only
rows in data matching both the parameter and delivery_datatype (datatype) are considered.
Optionally, data can be grouped by a custom column (e.g., Llocation_sea_basin) when thresholds
vary by group.

Usage

check_outliers(
data,
parameter,
datatype,
threshold_col = "extreme_upper”,
thresholds = .threshold_values,
custom_group = NULL,
direction = c("above"”, "below"),
return_df = FALSE,
verbose = TRUE

)
Arguments

data A tibble containing data in SHARK format. Must include columns: parameter,
value, delivery_datatype, station_name, sample_date, sample_id, shark_sample_id_md5,
sample_min_depth_m, sample_max_depth_m, and any custom grouping col-
umn used in custom_group.

parameter Character. Name of the parameter to check. Must exist in both data$parameter
and thresholds$parameter.

datatype Character. Data type to match against delivery_datatype in data and datatype

in thresholds.

threshold_col Character. Name of the threshold column in thresholds to use for comparison.
Defaults to "extreme_upper”. Other columns (e.g., "min”, "Q1", "median”,

n n on

max”, "mild_upper”, etc.) can also be used if present.

thresholds A tibble/data frame of thresholds. Must include columns parameter, datatype,
and at least one numeric threshold column. Defaults to . threshold_values.

custom_group Character or NULL. Optional column name in data and thresholds for group-
ing (e.g., "location_sea_basin"). If specified, thresholds are matched by
group as well as parameter and datatype.

direction Character. Either "above"” (flag values above threshold) or "below"” (flag values
below threshold). Default is "above".

return_df Logical. If TRUE, returns a plain data.frame of flagged rows instead of a DT
datatable. Default = FALSE.

verbose Logical. If TRUE, messages will be displayed during execution. Defaults to

TRUE.

20 check_outliers

Details

* Only rows in data matching both parameter and delivery_datatype are checked.
 If custom_group is specified, thresholds are applied per group.

* If threshold_col does not exist in thresholds, the function stops with a warning.
* Values exceeding (or below) the threshold are flagged as outliers.

* Intended for interactive use in Shiny apps where threshold_col can be selected dynamically.

Value

If outliers are found, returns a DT: :datatable or a data.frame (if return_df = TRUE) contain-
ing: datatype, station_name, sample_date, sample_id, parameter, value, threshold, and
custom_group if specified. Otherwise, prints a message indicating that values are within the thresh-
old range (if verbose = TRUE) and returns invisible (NULL).

See Also

get_shark_statistics() for preparing updated threshold data.

Examples

Minimal example dataset

example_data <- dplyr::tibble(
station_name = c("S1", "S2"),
sample_date = as.Date(c("2025-01-01", "2025-01-02")),
sample_id = 1:2,
shark_sample_id_md5 = letters[1:2],
sample_min_depth_m = c(@, 5),
sample_max_depth_m = c(1, 6),
parameter = c("Paraml1”, "Paraml1"),
value = c(5, 12),
delivery_datatype = c("TypeA”, "TypeA")

)

example_thresholds <- dplyr::tibble(
parameter = "Param1”,
datatype = "TypeA"”,
extreme_upper = 10,
mild_upper = 8
)

Check for values above "extreme_upper”
check_outliers(
data = example_data,

parameter = "Param1”,
datatype = "TypeA",
threshold_col = "extreme_upper”,

thresholds = example_thresholds,
return_df = TRUE

check_parameter_rules 21

Check for values above "mild_upper”
check_outliers(
data = example_data,
parameter = "Paraml”,
datatype = "TypeA”,
threshold_col = "mild_upper"”,
thresholds = example_thresholds,
return_df = TRUE

check_parameter_rules Check parameter values against logical rules

Description

Applies parameter-specific and row-wise logical rules to benthos/epibenthos data, flagging mea-
surements that violate defined conditions. This function replaces multiple deprecated check_*_logical()
functions with a general, flexible implementation.

Usage

check_parameter_rules(
data,
param_conditions = get(".param_conditions”, envir = asNamespace("SHARK4R")),
rowwise_conditions = get(".rowwise_conditions"”, envir = asNamespace("”"SHARK4R")),
return_df = FALSE,
return_logical = FALSE,
verbose = TRUE

Arguments

data A data frame containing at least the columns parameter and value.
param_conditions
A named list of parameter-specific rules. Each element should be a list with:
condition Function taking a numeric vector and returning a logical vector (TRUE
= violation).
range_msg Character string describing the expected range.
Defaults to SHARK4R: ::.param_conditions defined in the package names-
pace.
rowwise_conditions
A named list of row-wise rules applied across multiple parameters. Each el-
ement should be a function taking the full data frame and returning a logical
vector. Defaults to SHARK4R: : : .rowwise_conditions defined in the package
namespace.

return_df Logical. If TRUE, problematic rows are returned as plain data. frames.

22 check_parameter_rules

return_logical Logical. If TRUE, problematic rows are returned as logical vectors. Overrides

return_df.
verbose Logical. If TRUE, messages will be displayed during execution. Defaults to
TRUE.

Details

This function evaluates each parameter in param_conditions and rowwise_conditions. Only
parameters present in the dataset are checked. Messages are printed indicating whether values are
within expected ranges or which rows violate rules.

Value

A named list of results for each parameter:

Logical vector If return_logical = TRUE.
Data frame If return_df = TRUE and violations exist.
DT datatable If violations exist and return_df = FALSE.

NULL If no violations exist for the parameter.

Invisible return.

Examples

df <- data.frame(
station_name = c("A1", "A2", "A3", "A4"),
sample_date = as.Date("2023-05-01") + 0:3,
sample_id = 101:104,
parameter = c("Wet weight”, "Wet weight”, "Abundance”, "BQIm"),
value = c(0, 5, 0, 3)
)

Check against default package rules
check_parameter_rules(df)

Return problematic rows as data.frame
check_parameter_rules(df, return_df = TRUE)

Return logical vectors for each parameter
rule_check <- check_parameter_rules(df, return_logical = TRUE)
print(rule_check)

check_setup 23

check_setup Download and set up SHARK4R support files

Description

This function downloads the products folder from the SHARK4R GitHub repository and places
them in a user-specified directory. These folders contain Shiny applications and R Markdown doc-
uments used for quality control (QC) of SHARK data.

Usage

check_setup(path, run_app = FALSE, force = FALSE, verbose = TRUE)

Arguments
path Character string giving the directory where the products folder should be cre-
ated. Must be provided by the user.
run_app Logical, if TRUE runs the QC Shiny app located in the products folder after
setup. Default is FALSE.
force Logical, if TRUE forces a re-download and overwrites existing folder. Default is
FALSE.
verbose Logical, if TRUE prints progress messages. Default is TRUE.
Details

If the path folders already exist, the download will be skipped unless force = TRUE is specified.
Optionally, the function can launch the QC Shiny app directly after setup.

Value

An (invisible) list with the path to the local products folder:

Examples

Download support files into a temporary directory
check_setup(path = tempdir())

Force re-download if already present
check_setup(path = tempdir(), force = TRUE)

Download and run the QC Shiny app
if(interactive()){

check_setup(path = tempdir(), run_app = TRUE)
3

24 check_station_distance

check_station_distance
Check station distances against SMHI station list

Description

Matches reported station names against the SMHI curated station list ("station.txt") and checks
whether matched stations fall within pre-defined distance limits. This helps ensure that station
assignments are spatially consistent.

Usage

check_station_distance(
data,

station_file = NULL,
plot_leaflet = FALSE,
try_synonyms = TRUE,
fallback_crs = 4326,

only_bad = FALSE,
verbose = TRUE

Arguments

data A data frame containing at least the columns: station_name, sample_longitude_dd,
sample_latitude_dd.

station_file Optional path to a custom station file (tab-delimited). If NULL (default), the
function will first attempt to use the NODC_CONFIG environment variable, and if
that fails, will use the bundled "station.zip" from the SHARK4R package.

plot_leaflet Logical; if TRUE, displays a leaflet map with SMHI stations (blue circles with ra-
dius in popup) and reported stations (green/red/gray markers). Default is FALSE.

try_synonyms Logical; if TRUE (default), unmatched station names are also compared against
the SYNONYM_NAMES column in the station database.

fallback_crs Integer; CRS (EPSG code) to use when creating spatial points if no CRS is avail-
able. Defaults to 4326 (WGS84). Change this if your coordinates are reported
in another CRS (e.g., 3006 for SWEREF99 TM).

only_bad Logical; if TRUE, the leaflet map will only display stations that are outside the
allowed radius (red markers). Default is FALSE.

verbose Logical. If TRUE, messages will be displayed during execution. Defaults to
TRUE.
Details

Optionally, a leaflet map of stations can be plotted. SMHI stations that match the reported data are
shown as blue circles, with their allowed radius visualized and displayed in the popup (e.g., "ST1

check_station_distance 25

(Radius: 1000 m)"). Reported stations are shown as markers colored by whether they fall within
the radius (green), outside the radius (red), or unmatched (gray).

If try_synonyms = TRUE, the function will attempt a second match using the SYNONYM_NAMES col-
umn in the station database, splitting multiple synonyms separated by <or>.

The function first checks if a station file path is provided via the station_file argument. If not,
it looks for the NODC_CONFIG environment variable. This variable can point to a folder where the
NODC (Swedish National Oceanographic Data Center) configuration and station file are stored,
typically including:

e <NODC_CONFIG>/config/station.txt

If NODC_CONFIG is set and the folder exists, the function will use station. txt from that location.
Otherwise, it falls back to the bundled station.zip included in the SHARK4R package.

Value

If plot_leaflet = FALSE, returns a data frame with columns:

station_name Reported station name.
match_type TRUE if station matched in SMHI list, FALSE otherwise.
distance_m Distance in meters from reported station to matched SMHI station.

within_limit TRUE if distance <= allowed radius, FALSE if outside, NA if unmatched.
If plot_leaflet = TRUE, the function produces a leaflet map showing:

* Blue circles for SMHI stations with radius in the popup.

* Reported stations colored by status: green (within radius), red (outside radius), gray (un-
matched).

* If only_bad = TRUE, only the red stations (outside radius) are displayed.

Examples

Example data

df <- data.frame(
station_name = c("ANHOLT E"”, "BY5 BORNHOLMSDJ", "NEW STATION"),
sample_longitude_dd = c(12.1, 15.97, 17.5),
sample_latitude_dd = c(56.7, 55.25, 58.7)

)

Check station distance
check_station_distance(df, try_synonyms = TRUE, verbose = FALSE)

Plot bad points in leaflet map

map <- check_station_distance(df,
plot_leaflet = TRUE,
only_bad = TRUE,
verbose = FALSE)

26 check_value_logical

check_value_logical Identify non-numeric or non-logical values in measurement data

Description

This function checks whether entries in the value column of a dataset are valid numeric or logical
values. It is particularly useful for identifying common data entry errors such as inequality symbols
(<, >) or unintended text strings (e.g., "NA", "below detection"). The function reports any invalid
entries in an interactive DT: : datatable for easy inspection.

Usage

check_value_logical(data, return_df = FALSE)

Arguments
data A data frame. Must contain a column named value.
return_df Logical. If TRUE, return a plain data.frame of problematic rows instead of a DT
datatable. Default = FALSE.
Value

A DT::datatable or data frame listing unique invalid entries, or NULL (invisibly) if all values are
correctly formatted as numeric or logical.

Examples

Example dataset with mixed valid and invalid values
df <- data.frame(

station_name = c("A", "B", "C", "D", "E"),

value = c("3.4", "<@.2", "TRUE", "NA", "5e-3")
)

Check for invalid (non-numeric / non-logical) entries
check_value_logical(df, return_df = TRUE)

Example with all valid numeric and logical values
df_valid <- data.frame(value = c(1.2, @, TRUE, FALSE, 3.5))
check_value_logical(df_valid)

check_zero_positions 27

check_zero_positions Identify samples with zero-valued station coordinates

Description

This function inspects a dataset containing sample coordinates to identify potential issues where
longitude or latitude values are zero (0), which typically indicate missing or erroneous station posi-
tions. The function can return a summary table, a filtered data frame, or a logical vector highlighting
problematic rows. It is useful as a data quality control step before spatial analyses or database im-

ports.
Usage
check_zero_positions(
data,
coord = "longitude”,

return_df = FALSE,
return_logical = FALSE,
verbose = TRUE

)
Arguments
data A data frame. Must contain sample_longitude_dd and/or sample_latitude_dd.
coord Character. Which coordinate(s) to check: "longitude", "latitude", or "both".
Default = "longitude".
return_df Logical. If TRUE, return a plain data.frame of problematic rows instead of a DT

datatable. Default = FALSE.

return_logical Logical. If TRUE, return a logical vector of length nrow(data) indicating which
rows have zero in the selected coordinate(s). Overrides return_df. Default =
FALSE.

verbose Logical. If TRUE, messages will be displayed during execution. Defaults to
TRUE.

Value

A DT datatable, a data.frame, a logical vector, or NULL (if no problems found and return_logical
=FALSE).

Examples

Example data

df <- data.frame(
station_name = c("A", "B", "C"),
sample_longitude_dd = c(15.2, @, 18.7),
sample_latitude_dd = c(56.3, 58.1, @)

)

28 check zero value

Check for zeroes in both coordinates and return as data.frame
check_zero_positions(df, coord = "both"”, return_df = TRUE)

Return a logical vector instead of a table

check_zero_positions(df, coord = "both", return_logical = TRUE)
check_zero_value Identify records with zero-valued measurement data
Description

This function scans a dataset for cases where the measurement column (value) contains zero (0)
values, which may indicate missing, censored, or erroneous data. It returns either a DT: : datatable
for easy inspection or a plain data. frame of the affected rows. This function is useful for quality
control and validation prior to data aggregation, reporting, or database submission.

Usage

check_zero_value(data, return_df = FALSE)

Arguments
data A data frame. Must contain a column named value.
return_df Logical. If TRUE, return a plain data.frame of problematic rows instead of a DT
datatable. Default = FALSE.
Value

A DT datatable or a data.frame of zero-value records, or NULL (invisibly) if no zero values are found.

Examples

Example dataset

df <- data.frame(
station_name = c("A", "B", "C", "D"),
sample_date = as.Date(c("2023-06-01", "2023-06-02", "2023-06-03", "2023-06-04")),
value = ¢(3.2, 0, 1.5, 0)

)

Return a plain data.frame of zero-value records
check_zero_value(df, return_df = TRUE)

clean_shark4r_cache 29

clean_shark4r_cache Clean SHARK4R cache by file age and session

Description

Deletes cached files in the SHARKA4R cache directory that are older than a specified number of
days.

Usage

clean_shark4r_cache(
days = 1,
cache_dir = tools::R_user_dir("SHARK4R", "cache"),
clear_perm_cache = FALSE,
search_pattern = NULL,
verbose = TRUE

)
Arguments
days Numeric; remove files older than this number of days. Default is 1.
cache_dir Character; path to the cache directory to clean. Defaults to the SHARK4R cache

directory in the user-specific R folder (via tools::R_user_dir("SHARK4R",
"cache")). You can override this parameter for custom cache locations.

clear_perm_cache

Logical. If TRUE, filed that are cached across R sessions are cleared, i.e. geo-
graphical shape files. Defaults to FALSE.

search_pattern Character; optional regex pattern to filter which files to consider for deletion.

verbose Logical. If TRUE, displays messages of cache cleaning progress. Defaults to
TRUE.

Details

The cache is automatically cleared after 24h.

Value

Invisible NULL. Messages are printed about what was deleted and whether the in-memory session
cache was cleared.

See Also

get_peg_list(), get_nomp_list(), get_shark_codes(), get_dyntaxa_dwca(), get_shark_statistics()
for functions that populate the cache.

30 construct_dyntaxa_table

Examples

Remove files older than 6@ days and clear session cache
clean_shark4r_cache(days = 60)

construct_dyntaxa_table
Construct a hierarchical taxonomy table from Dyntaxa

Description

This function constructs a taxonomy table based on Dyntaxa taxon IDs. It queries the SLU Art-
databanken API (Dyntaxa) to fetch taxonomy information and organizes the data into a hierarchical
table.

Usage

construct_dyntaxa_table(
taxon_ids,
subscription_key = Sys.getenv("DYNTAXA_KEY"),
shark_output = TRUE,
add_parents = TRUE,
add_descendants = FALSE,
add_descendants_rank = "genus",
add_synonyms = TRUE,
add_missing_taxa = FALSE,
add_hierarchy = FALSE,
verbose = TRUE,
add_genus_children = deprecated(),
recommended_only = deprecated(),
parent_ids = deprecated()

Arguments

taxon_ids An integer vector containing taxon IDs for which taxonomy information is re-
quested. These IDs should correspond to specific taxonomic entities within the
Dyntaxa database.

subscription_key
A Dyntaxa API subscription key. By default, the key is read from the environ-
ment variable DYNTAXA_KEY.

You can provide the key in three ways:
 Directly as a parameter: construct_dyntaxa_table(238366, subscription_key
= "your_key_here").

¢ Temporarily for the session: Sys.setenv(DYNTAXA_KEY = "your_key_here").
After this, you do not need to pass subscription_key to the function.

construct_dyntaxa_table 31

* Permanently across sessions by adding it to your ~/.Renviron file. Use
usethis::edit_r_environ() to open the file, then add: DYNTAXA_KEY=your_key_here.
After this, you do not need to pass subscription_key to the function.

shark_output Logical. If TRUE, the function will return a table formatted with SHARK-
compatible columns. If FALSE, all available columns are returned. Default is
TRUE.

add_parents Logical. If TRUE, the function will include parent taxa (higher ranks) for the
specified taxon IDs in the output. Default is TRUE.

add_descendants
Logical. If TRUE, the output will include descendant taxa (lower ranks) for the
specified taxon IDs and the rank specified in add_descendants_rank. Default
is FALSE.

add_descendants_rank
Character string specifying the rank of descendant taxa to include. Allowed val-
ues are "kingdom", "phylum", "class", "order", "family", "genus", and "species".
Default is "genus".

add_synonyms Logical. If TRUE, the function will include synonyms for the accepted taxa in
the output. Default is TRUE.

add_missing_taxa
Logical. If TRUE, the function will attempt to fetch missing taxa (i.e., taxa not

found in the initial Dyntaxa DwC-A query, such as species complexes). Default
is FALSE.

add_hierarchy Logical. If TRUE, the function will add a hierarchy column indicating the taxo-
nomic relationships (e.g., parent-child) among the taxa. Default is FALSE.

verbose Logical. If TRUE, the function will print additional messages to provide feed-
back on its progress. Default is TRUE.

add_genus_children
[Deprecated] Use add_descendants instead.

recommended_only
[Deprecated] Use add_synonyms instead.

parent_ids [Deprecated] Use taxon_ids instead. construct_dyntaxa_table now han-
dles taxon IDs.

Details

A valid Dyntaxa API subscription key is required. You can request a free key for the "Taxonomy"
service from the ArtDatabanken API portal: https://api-portal.artdatabanken.se/

Note: Please review the API conditions and register for access before using the API. Data collected
through the API is stored at SLU Artdatabanken. Please also note that the authors of SHARK4R are
not affiliated with SLU Artdatabanken.

Value

A tibble representing the constructed taxonomy table.

https://api-portal.artdatabanken.se/
https://www.slu.se/artdatabanken/rapportering-och-fynd/oppna-data-och-apier/
https://api-portal.artdatabanken.se/

32 convert_ddmm_to_dd

See Also

get_worms_taxonomy_tree for an equivalent WoRMS function

SLU Artdatabanken API Documentation

Examples

Not run:

Construct Dyntaxa taxonomy table for taxon IDs 238366 and 1010380
taxon_ids <- c(238366, 1010380)

taxonomy_table <- construct_dyntaxa_table(taxon_ids, "your_subscription_key")
print(taxonomy_table)

End(Not run)

convert_ddmm_to_dd Convert coordinates from DDMM format to decimal degrees

Description

This function converts geographic coordinates provided in the DDMM format (degrees and minutes)
to decimal degrees. It can handle:

* DDMM (e.g., 5733 to 57°33’ to 57.55°)

* DDMMss or DDMMss... (extra digits after minutes are interpreted as fractional minutes,
e.g., 573345 to 57°33.45’ to 57.5575°)
Usage

convert_ddmm_to_dd(coord)

Arguments

coord A numeric or character vector of coordinates in DDMM format.

Details
Non-numeric characters are removed before conversion. Coordinates shorter than 4 digits are re-
turned as NA.

Value

A numeric vector of decimal degrees corresponding to the input coordinates. Names from the input
vector are removed.

https://api-portal.artdatabanken.se/

find_required_fields

Examples

Basic DDMM input

33

convert_ddmm_to_dd(c(5733, 6045))

Input with fractional minutes
convert_ddmm_to_dd(c("573345", "604523"))

Input with non-numeric characters
convert_ddmm_to_dd(c("57°33"'", "60°45'23\""))

find_required_fields

Find required fields in a SHARK delivery template

Description

Identifies which columns are mandatory in the SHARK delivery template based on rows starting

with "*" (one or more).

You can specify how many levels of asterisks to include.

Usage
find_required_fields(
datatype,
stars = 1,
bacterioplankton_subtype = "abundance”
)
Arguments
datatype Character. The datatype name. Available options include:

"non

"Bacterioplankton" (subtypes: "abundance", "production")
"Chlorophyll"

"Epibenthos" (dive transect)
"Dropvideo" (epibenthos drop video)
"Grey seal"

"Harbour seal"

"Ringed seal"

"Harbour Porpoise"

"Physical and Chemical"

"Primary production”
"Phytoplankton”

"Picoplankton”

"Sedimentation"

"Seal pathology"

"Profile"

"Zooplankton"

34 get_delivery_template

e "Zoobenthos"

stars Integer. Maximum number of "" levels to include. Default = 1 (only single).
For example, stars = 2 includes """ and "**", stars =3 includes "", ""', and

1"en
bacterioplankton_subtype

Character. For "Bacterioplankton" only: either "abundance" (default) or "pro-
duction". Ignored for other datatypes.

Details

Note: A single "*" marks required fields in the standard SHARK template. A double "**" is
often used to specify columns required for national monitoring only. For more information, see:
https://www.smhi.se/data/hav-och-havsmiljo/datavardskap-oceanografi-och-marinbiologi/leverera-data

Value

A character vector of column names that are required in the template.

Examples

Only single "x" required columns
find_required_fields("Bacterioplankton™)

Include both "x" and "**" required columns (national monitoring too)
find_required_fields("Bacterioplankton”, stars = 2)

Include up to three levels of "x"
find_required_fields("Phytoplankton”, stars = 3)

get_delivery_template Get a delivery template for a SHARK datatype

Description

Downloads and reads the SHARK Excel delivery template for a given datatype. The template
contains the column definitions and headers used for submission.

Usage

get_delivery_template(
datatype,
sheet = "Kolumner",
header_row = 4,
skip = 1,
bacterioplankton_subtype = "abundance”,
force = FALSE,
clean_cache_days = 1

get_delivery_template

Arguments

35

datatype Character. The datatype name. Available options include:

"non

"Bacterioplankton" (subtypes: "abundance", "production")
"Chlorophyll"

"Epibenthos" (dive transect)
"Dropvideo" (epibenthos drop video)
"Grey seal"

"Harbour seal"

"Ringed seal"

"Harbour Porpoise"

"Physical and Chemical"

"Primary production”
"Phytoplankton”

"Picoplankton”

"Sedimentation"

"Seal pathology"

"Profile"

"Zooplankton"

"Zoobenthos"

sheet Character or numeric. Name (e.g., "Kolumner") or index (e.g., 1) of the sheet in
the Excel file to read. Default is "Kolumner".

header_row Integer. Row number in the Excel file that contains the column headers. Default

is 4.

skip Integer. Number of rows to skip before reading data. Default is 1.

bacterioplankton_subtype
Character. For "Bacterioplankton" only: either "abundance" (default) or "pro-
duction". Ignored for other datatypes.

force Logical; if TRUE, forces re-download even if cached copy exists.

clean_cache_days

Numeric; if not NULL, cached template files older than this number of days are
deleted automatically. Default is 1.

Value

A tibble containing the delivery template. Column names are set from the header row.

Examples

Bacterioplankton abundance
abun <- get_delivery_template("Bacterioplankton”,

print(abun)

bacterioplankton_subtype = "abundance")

36 get_dyntaxa_dwca

Bacterioplankton production
prod <- get_delivery_template("Bacterioplankton”,
bacterioplankton_subtype = "production”)

Phytoplankton template
phyto <- get_delivery_template("Phytoplankton™)

Phytoplankton column explanation (sheet number 3)
phyto_column_explanation <- get_delivery_template("Phytoplankton”,

sheet = 3,
header_row = 4,
skip = 3)
print(phyto_column_explanation)
get_dyntaxa_dwca Download and read Darwin Core Archive files from Dyntaxa

Description

This function downloads a complete Darwin Core Archive (DwCA) of Dyntaxa from the SLU
Artdatabanken API, extracts the archive, and reads the specified CSV file into R.

Usage

get_dyntaxa_dwca(
subscription_key = Sys.getenv("DYNTAXA_KEY"),
file_to_read = "Taxon.csv",
force = FALSE,
verbose = TRUE

Arguments

subscription_key
A Dyntaxa API subscription key. By default, the key is read from the environ-
ment variable DYNTAXA_KEY.

You can provide the key in three ways:

* Directly as a parameter: get_dyntaxa_dwca(subscription_key = "your_key_here").
* Temporarily for the session: Sys.setenv(DYNTAXA_KEY = "your_key_here").
After this, you do not need to pass subscription_key to the function.

* Permanently across sessions by adding it to your ~/.Renviron file. Use
usethis::edit_r_environ() to open the file, then add: DYNTAXA_KEY=your_key_here.
After this, you do not need to pass subscription_key to the function.

get_dyntaxa_parent_ids 37

file_to_read A string specifying the name of the CSV file to read from the extracted archive.
Allowed options are: "Reference.csv”, "SpeciesDistribution.csv”, "Taxon.csv”,
or "VernacularName.csv". Defaults to "Taxon.csv".

force A logical value indicating whether to force a fresh download of the archive, even
if a cached copy is available. Defaults to FALSE.
verbose A logical value indicating whether to show download progress. Defaults to
TRUE.
Details

By default, the archive is downloaded and cached across R sessions. On subsequent calls, the
function reuses the cached copy of the extracted files to avoid repeated downloads. Use the force
parameter to re-download the archive if needed. The cache is cleared automatically after 24 hours,
but you can also manually clear it using clean_shark4r_cache.

A valid Dyntaxa API subscription key is required. You can request a free key for the "Taxonomy"
service from the ArtDatabanken API portal: https://api-portal.artdatabanken.se/

Note: Please review the API conditions and register for access before using the API. Data collected
through the API is stored at SLU Artdatabanken. Please also note that the authors of SHARK4R are
not affiliated with SLU Artdatabanken.

Value

A tibble containing the data from the specified CSV file.

See Also

clean_shark4r_cache() to manually clear cached files.

Examples

Not run:
Provide your Dyntaxa API subscription key
subscription_key <- "your_subscription_key"

Download and read the Taxon.csv file
taxon_data <- get_dyntaxa_dwca(subscription_key, file_to_read = "Taxon.csv")

End(Not run)

get_dyntaxa_parent_ids
Get parent taxon IDs for specified taxon IDs from Dyntaxa

https://api-portal.artdatabanken.se/
https://www.slu.se/artdatabanken/rapportering-och-fynd/oppna-data-och-apier/
https://api-portal.artdatabanken.se/

38 get_dyntaxa_parent_ids

Description

This function queries the SLU Artdatabanken API (Dyntaxa) to retrieve parent taxon IDs for the
specified taxon IDs. It constructs a request with the provided taxon IDs, sends the request to the
SLU Artdatabanken API, and processes the response to return a list of parent taxon IDs.

Usage

get_dyntaxa_parent_ids(
taxon_ids,
subscription_key = Sys.getenv("DYNTAXA_KEY"),
verbose = TRUE

Arguments

taxon_ids A vector of numeric taxon IDs for which parent taxon IDs are requested.

subscription_key
A Dyntaxa API subscription key. By default, the key is read from the environ-
ment variable DYNTAXA_KEY.

You can provide the key in three ways:

* Directly as a parameter: get_dyntaxa_parent_ids(238366, subscription_key
= "your_key_here").

¢ Temporarily for the session: Sys.setenv(DYNTAXA_KEY = "your_key_here").
After this, you do not need to pass subscription_key to the function.

* Permanently across sessions by adding it to your ~/.Renviron file. Use
usethis::edit_r_environ() to open the file, then add: DYNTAXA_KEY=your_key_here.
After this, you do not need to pass subscription_key to the function.

verbose Logical. Default is TRUE.

Details

A valid Dyntaxa API subscription key is required. You can request a free key for the "Taxonomy"
service from the ArtDatabanken API portal: https://api-portal.artdatabanken.se/

Note: Please review the API conditions and register for access before using the API. Data collected
through the API is stored at SLU Artdatabanken. Please also note that the authors of SHARK4R are
not affiliated with SLU Artdatabanken.

Value

A list containing parent taxon IDs corresponding to the specified taxon IDs.

See Also

SLU Artdatabanken API Documentation

https://api-portal.artdatabanken.se/
https://www.slu.se/artdatabanken/rapportering-och-fynd/oppna-data-och-apier/
https://api-portal.artdatabanken.se/
https://api-portal.artdatabanken.se/

get_dyntaxa_records 39

Examples

Not run:

Get parent taxon IDs for taxon IDs 238366 and 1010380

parent_ids <- get_dyntaxa_parent_ids(c(238366, 1010380), "your_subscription_key")
print(parent_ids)

End(Not run)

get_dyntaxa_records Get taxonomic information from Dyntaxa for specified taxon IDs

Description

This function queries the SLU Artdatabanken API (Dyntaxa) to retrieve taxonomic information for
the specified taxon IDs. It constructs a request with the provided taxon IDs, sends the request to
the SLU Artdatabanken API, and processes the response to return taxonomic information in a data
frame.

Usage

get_dyntaxa_records(taxon_ids, subscription_key = Sys.getenv("DYNTAXA_KEY"))

Arguments

taxon_ids A vector of numeric taxon IDs (Dyntaxa ID) for which taxonomic information
is requested.
subscription_key
A Dyntaxa API subscription key. By default, the key is read from the environ-
ment variable DYNTAXA_KEY.
You can provide the key in three ways:
* Directly as a parameter: get_dyntaxa_records(238366, subscription_key
= "your_key_here").
¢ Temporarily for the session: Sys.setenv(DYNTAXA_KEY = "your_key_here").
After this, you do not need to pass subscription_key to the function.
* Permanently across sessions by adding it to your ~/.Renviron file. Use
usethis::edit_r_environ() to open the file, then add: DYNTAXA_KEY=your_key_here.
After this, you do not need to pass subscription_key to the function.

Details

A valid Dyntaxa API subscription key is required. You can request a free key for the "Taxonomy"
service from the ArtDatabanken API portal: https://api-portal.artdatabanken.se/

Note: Please review the API conditions and register for access before using the API. Data collected
through the API is stored at SLU Artdatabanken. Please also note that the authors of SHARK4R are
not affiliated with SLU Artdatabanken.

https://api-portal.artdatabanken.se/
https://www.slu.se/artdatabanken/rapportering-och-fynd/oppna-data-och-apier/
https://api-portal.artdatabanken.se/

40 get_hab_list

Value
A tibble containing taxonomic information for the specified taxon IDs. Columns include taxonId,
names, category, rank, isRecommended, and parentTaxonId.

See Also
SLU Artdatabanken API Documentation

Examples

Not run:

Get taxonomic information for taxon IDs 238366 and 1010380

taxon_info <- get_dyntaxa_records(c(238366, 1010380), "your_subscription_key")
print(taxon_info)

End(Not run)

get_hab_list Download the IOC-UNESCO Taxonomic Reference List of Harmful
Micro Algae

Description

This function retrieves the IOC-UNESCO Taxonomic Reference List of Harmful Micro Algae
(Lundholm et al. 2009) from the World Register of Marine Species (WoRMS). The data is returned
as a dataframe, with options to customize the fields included in the download.

Usage

get_hab_list(
species_only = TRUE,
harmful_non_toxic_only = FALSE,
aphia_id = TRUE,
scientific_name = TRUE,
authority = TRUE,
fossil = TRUE,
rank_name = TRUE,
status_name = TRUE,
qualitystatus_name = TRUE,
modified = TRUE,
1sid = TRUE,
parent_id = TRUE,
stored_path = TRUE,
citation = TRUE,
classification = TRUE,

https://api-portal.artdatabanken.se/

get_hab_list 41

environment = TRUE,
accepted_taxon = TRUE,
verbose = TRUE

Arguments

species_only Logical. If TRUE, only species-level records are returned (i.e., rows where the
Species column is not NA). Note that this filter is only applied when harmful_non_toxic_only
= FALSE; it is ignored when harmful_non_toxic_only = TRUE.
harmful _non_toxic_only
Logical. If TRUE, retrieves only non-toxigenic marine microalgal species flagged
with harmful effects. Defaults to FALSE. [Experimental]

aphia_id Logical. Include the AphialD field. Defaults to TRUE.

scientific_name
Logical. Include the scientific name field. Defaults to TRUE.

authority Logical. Include the authority field. Defaults to TRUE.

fossil Logical. Include information about fossil status. Defaults to TRUE.

rank_name Logical. Include the taxonomic rank (e.g., species, variety, forma). Defaults to
TRUE.

status_name Logical. Include the taxonomic status field. Defaults to TRUE.

qualitystatus_name
Logical. Include the quality status field. Defaults to TRUE.

modified Logical. Include the date of last modification field. Defaults to TRUE.
1sid Logical. Include the Life Science Identifier (LSID) field. Defaults to TRUE.
parent_id Logical. Include the parent AphialD field. Defaults to TRUE.

stored_path Logical. Include the stored path field. Defaults to TRUE.
citation Logical. Include citation information. Defaults to TRUE.

classification Logical. Include the full taxonomic classification (e.g., kingdom, phylum, class).
Defaults to TRUE.

environment Logical. Include environmental data (e.g., marine, brackish, freshwater, terres-
trial). Defaults to TRUE.

accepted_taxon Logical. Include information about the accepted taxon (e.g., scientific name and
authority). Defaults to TRUE.

verbose Logical. Whether to display progress information. Default is “TRUE**.

Details

This function submits a POST request to the WoRMS database to retrieve the IOC-UNESCO Tax-
onomic Reference List of Harmful Micro Algae. The downloaded data can include various fields,
which are controlled by the input parameters. If a field is not required, set the corresponding pa-
rameter to FALSE to exclude it from the output.

42 get_nomp_list

Value

A tibble containing the HABs taxonomic list, with columns based on the selected parameters.

References

Lundholm, N.; Bernard, C.; Churro, C.; Escalera, L.; Hoppenrath, M.; Iwataki, M.; Larsen, J.;
Mertens, K.; Murray, S.; Probert, I.; Salas, R.; Tillmann, U.; Zingone, A. (Eds) (2009 onwards).
IOC-UNESCO Taxonomic Reference List of Harmful Microalgae. https://www.marinespecies.org/hab/.
doi:10.14284/362

See Also

https://www.marinespecies.org/hab/ for IOC-UNESCO Taxonomic Reference List of Harm-
ful Micro Algae

Examples

Download the default HABs taxonomic list
habs_taxlist_df <- get_hab_list()
head(habs_taxlist_df)

Include higer taxa records
habs_taxlist_df <- get_hab_list(species_only = FALSE)
head(habs_taxlist_df)

Retrieve only non-toxigenic harmful species (experimental stage)
habs_taxlist_df <- get_hab_list(harmful_non_toxic_only = TRUE, verbose = FALSE)
head(habs_taxlist_df)

Include only specific fields in the output
habs_taxlist_df <- get_hab_list(aphia_id = TRUE, scientific_name = TRUE, authority = FALSE)
head(habs_taxlist_df)

get_nomp_list Get the latest NOMP biovolume Excel list

Description

This function downloads the latest available Nordic Marine Phytoplankton Group (NOMP) biovol-
ume zip archive from SMHI, unzips it, and reads the first Excel file by default. You can also specify
which file in the archive to read.

Usage

get_nomp_list(
year = as.numeric(format(Sys.Date(), "%Y")),
file = NULL,

https://www.marinespecies.org/hab/

get_nomp_list 43

sheet = NULL,

force = FALSE,
base_url = NULL,
clean_cache_days = 30,
verbose = TRUE

)
Arguments

year Numeric year to download. Default is current year; if not available, previous
years are automatically tried.

file Character string specifying which file in the zip archive to read. Defaults to the
first Excel file in the archive.

sheet Character or numeric; the name or index of the sheet to read from the Excel file.
If neither argument specifies the sheet, defaults to the first sheet.

force Logical; if TRUE, forces re-download of the zip file even if cached copy exists.

base_url Base URL (without "/nomp_taxa_biovolumes_and_carbon_YYYY.zip") for the

NOMP biovolume files. Defaults to the SMHI directory.

clean_cache_days

Numeric; if not NULL, cached NOMP zip files older than this number of days
will be automatically deleted and replaced by a new download. Defaults to 30.
Set to NULL to disable automatic cleanup.

verbose A logical indicating whether to print progress messages. Default is TRUE.

Value

A tibble with the contents of the requested Excel file.

See Also

clean_shark4r_cache() to manually clear cached files.

Examples

Get the latest available list
nomp_list <- get_nomp_list()
head(nomp_list)

Get the 2023 list and clean old cache files older than 60 days
nomp_list_2023 <- get_nomp_list(2023, clean_cache_days = 60)
head(nomp_list_2023)

44 get_nua_external_links

get_nua_external_links
Retrieve external links or facts for taxa from Nordic Microalgae

Description

This function retrieves external links related to algae taxa from the Nordic Microalgae API. It takes
a vector of slugs (taxon identifiers) and returns a data frame containing the external links associated
with each taxon. The data includes the provider, label, external ID, and the URL of the external
link.

Usage

get_nua_external_links(slug, verbose = TRUE, unparsed = FALSE)

Arguments
slug A vector of taxon slugs (identifiers) for which to retrieve external links.
verbose A logical flag indicating whether to display a progress bar. Default is TRUE.
unparsed Logical. If TRUE, the API response with all facts is returned as an unparsed list.
Default is FALSE.
Details

The slugs (taxon identifiers) used in this function can be retrieved using the get_nua_taxa() func-
tion, which returns a data frame with a column for taxon slugs, along with other relevant metadata
for each taxon.

Value

When unparsed = FALSE: a tibble containing the following columns:

slug The slug (identifier) of the taxon.

provider The provider of the external link.

label The label of the external link.

external_id The external ID associated with the external link.

external_url The URL of the external link.

collection The collection category, which is "External Links" for all rows.

See Also

https://nordicmicroalgae.org/ for Nordic Microalgae website.

https://nordicmicroalgae.org/api/ for Nordic Microalgae API documentation.

https://nordicmicroalgae.org/
https://nordicmicroalgae.org/api/

get_nua_harmfulness 45

Examples

Retrieve external links for a vector of slugs

external_links <- get_nua_external_links(slug = c("chaetoceros-debilis”, "alexandrium-tamarense”),
verbose = FALSE)

head(external_links)

get_nua_harmfulness Retrieve harmfulness for taxa from Nordic Microalgae

Description

This function retrieves harmfulness information related to algae taxa from the Nordic Microalgae
API. It takes a vector of slugs (taxon identifiers) and returns a data frame containing the harmfulness
information associated with each taxon. The data includes the provider, label, external ID, and the
URL of the external link.

Usage

get_nua_harmfulness(slug, verbose = TRUE)

Arguments
slug A vector of taxon slugs (identifiers) for which to retrieve external links.
verbose A logical flag indicating whether to display a progress bar. Default is TRUE.
Details

The slugs (taxon identifiers) used in this function can be retrieved using the get_nua_taxa() func-
tion, which returns a data frame with a column for taxon slugs, along with other relevant metadata
for each taxon.

Value

A tibble containing the following columns:

slug The slug (identifier) of the taxon.

provider The provider of the external link.

label The label of the external link.

external_id The external ID associated with the external link.

external_url The URL of the external link.

collection The collection category, which is "Harmful algae blooms" for all rows.

See Also

https://nordicmicroalgae.org/ for Nordic Microalgae website.

https://nordicmicroalgae.org/api/ for Nordic Microalgae API documentation.

https://nordicmicroalgae.org/
https://nordicmicroalgae.org/api/

46 get_nua_media_links

Examples

Retrieve external links for a vector of slugs
harmfulness <- get_nua_harmfulness(slug = c(”"dinophysis-acuta”,
"alexandrium-ostenfeldii”),
verbose = FALSE)
print(harmfulness)

get_nua_media_links Retrieve and extract media URLs from Nordic Microalgae

Description

This function retrieves media information from the Nordic Microalgae API and extracts slugs and
URLSs for different renditions (large, original, small, medium) for each media item.

Usage
get_nua_media_links(unparsed = FALSE)

Arguments
unparsed Logical. If TRUE, complete API response is returned as an unparsed list. Default
is FALSE.
Value

When unparsed = FALSE: a tibble with the following columns:

* slug: The slug of the related taxon.

e 1_url: The URL for the "large" rendition.

* o_url: The URL for the "original" rendition.
e s_url: The URL for the "small" rendition.

e m_url: The URL for the "medium" rendition.

See Also

https://nordicmicroalgae.org/ for Nordic Microalgae website.

https://nordicmicroalgae.org/api/ for Nordic Microalgae API documentation.

Examples

Retrieve media information
media_info <- get_nua_media_links(unparsed = FALSE)

Preview the extracted data
head(media_info)

https://nordicmicroalgae.org/
https://nordicmicroalgae.org/api/

get_nua_taxa 47

get_nua_taxa Retrieve taxa information from Nordic Microalgae

Description

This function retrieves all taxonomic information for algae taxa from the Nordic Microalgae API.
It fetches details including scientific names, authorities, ranks, and image URLs (in different sizes:
large, medium, original, and small).

Usage

get_nua_taxa(unparsed = FALSE)

Arguments
unparsed Logical. If TRUE, complete API response is returned as an unparsed list. Default
is FALSE.
Value

When unparsed = FALSE: a tibble containing the following columns:

slug A unique identifier for the taxon.

scientific_name
The scientific name of the taxon.

authority The authority associated with the scientific name.
rank The taxonomic rank of the taxon.
See Also

https://nordicmicroalgae.org/ for Nordic Microalgae website.

https://nordicmicroalgae.org/api/ for Nordic Microalgae API documentation.

Examples

Retrieve and display taxa data
taxa_data <- get_nua_taxa(unparsed = FALSE)
head(taxa_data)

https://nordicmicroalgae.org/
https://nordicmicroalgae.org/api/

48 get_peg_list

get_peg_list Get the latest EG-Phyto/PEG biovolume Excel list

Description

This function downloads the EG-Phyto (previously PEG) biovolume zip archive from ICES (using
cache_peg_zip()), unzips it, and reads the first Excel file by default. You can also specify which
file in the archive to read.

Usage
get_peg_list(
file = NULL,
sheet = NULL,

force = FALSE,

url = "https://www.ices.dk/data/Documents/ENV/PEG_BVOL.zip",
clean_cache_days = 30,

verbose = TRUE

)
Arguments

file Character string specifying which file in the zip archive to read. Defaults to the
first Excel file in the archive.

sheet Character or numeric; the name or index of the sheet to read from the Excel file.
If neither argument specifies the sheet, defaults to the first sheet.

force Logical; if TRUE, forces re-download of the zip file even if a cached copy exists.

url Character string with the URL of the PEG zip file. Defaults to the official ICES

link.

clean_cache_days
Numeric; if not NULL, cached PEG zip files older than this number of days will
be automatically deleted and replaced by a new download. Defaults to 30. Set
to NULL to disable automatic cleanup.

verbose A logical indicating whether to print progress messages. Default is TRUE.

Value

A tibble with the contents of the requested Excel file.

See Also

clean_shark4r_cache() to manually clear cached files.

get_shark_codes 49

Examples

Read the first Excel file from the PEG zip
peg_list <- get_peg_list()
head(peg_list)

get_shark_codes Get SHARK codelist from SMHI

Description

This function downloads the SHARK codes Excel file from SMHI (if not already cached) and reads
it into R. The file is stored in a persistent cache directory so it does not need to be downloaded again
in subsequent sessions.

Usage

get_shark_codes(
url =
"https://smhi.se/oceanografi/oce_info_data/shark_web/downloads/codelist_SMHI.x1lsx",
sheet = 1,
skip = 1,
force = FALSE,
clean_cache_days = 30

)
Arguments
url Character string with the URL to the SHARK codes Excel file. Defaults to the
official SMHI codelist.
sheet Sheet to read. Can be either the sheet name or its index (default is 1).
skip Number of rows to skip before reading data (default is 1, to skip the header row).
force Logical; if TRUE, forces re-download of the Excel file even if a cached copy is

available. Default is FALSE.

clean_cache_days
Numeric; if not NULL, cached SHARK code Excel files older than this number
of days will be automatically deleted. Defaults to 30. Set to NULL to disable
automatic cleanup.

Value

A tibble containing the contents of the requested sheet.

See Also

clean_shark4r_cache() to manually clear cached files.

50 get_shark_data

Examples

Read the first sheet, skipping the first row
codes <- get_shark_codes()
head(codes)

Force re-download of the Excel file
codes <- get_shark_codes(force = TRUE)

get_shark_data Retrieve tabular data from SHARK

Description

The get_shark_data() function retrieves tabular data from the SHARK database hosted by SMHI.
The function sends a POST request to the SHARK API with customizable filters, including year,
month, taxon name, water category, and more, and returns the retrieved data as a structured tibble.
To view available filter options, see get_shark_options.

Usage
get_shark_data(
tableView = "sharkweb_overview"”,
headerLang = "internal_key",

save_data = FALSE,
file_path = NULL,
delimiters = "point-tab”,
lineEnd = "win",
encoding = "utf_8",
dataTypes = c(),
bounds = c(),

fromYear = NULL,
toYear = NULL,

months = c(),
parameters = c(),
checkStatus = "",
qualityFlags = c(),
deliverers = c(),
orderers = c(),
projects = c(),
datasets = c(),
minSamplingDepth = "",
maxSamplingDepth = "",
redListedCategory = c(),
taxonName = c(),
stationName = c(),
vattenDistrikt = c(),

get_shark_data 51

seaBasins = c(),

counties = c(),
municipalities = c(),
waterCategories = c(),
typOmraden = c(),
helcomOspar = c(),
seaAreas = c(),
hideEmptyColumns = FALSE,
row_limit = 10*7,

prod = TRUE,
utv = FALSE,
verbose = TRUE
)
Arguments
tableView Character. Specifies the columns of the table to retrieve. Options include:

* "sharkweb_overview": Overview table

e "sharkweb_all": All available columns

* "sharkdata_bacterioplankton”: Bacterioplankton table
* "sharkdata_chlorophyll"”: Chlorophyll table

* "sharkdata_epibenthos”: Epibenthos table

* "sharkdata_greyseal”: Greyseal table

* "sharkdata_harbourporpoise”: Harbour porpoise table

* "sharkdata_harbourseal”: Harbour seal table

* "sharkdata_jellyfish": Jellyfish table

* "sharkdata_physicalchemical”: Physical chemical table

* "sharkdata_physicalchemical_columns”: Physical chemical table: col-
umn view

* "sharkdata_phytoplankton”: Phytoplankton table

* "sharkdata_picoplankton”: Picoplankton table

* "sharkdata_planktonbarcoding"”: Plankton barcoding table

* "sharkdata_primaryproduction”: Primary production table

* "sharkdata_ringedseal”: Ringed seal table

* "sharkdata_sealpathology": Seal pathology table

* "sharkdata_sedimentation”: Sedimentation table

¢ "sharkdata_zoobenthos": Zoobenthos table

* "sharkdata_zooplankton"”: Zooplankton table

* "report_sum_year_param”: Report sum per year and parameter

* "report_sum_year_param_taxon": Report sum per year, parameter and
taxon

* "report_sampling_per_station": Report sampling per station
* "report_obs_taxon": Report observed taxa

* "report_stations”: Report stations

* "report_taxon"”: Report taxa

52

headerLang

save_data

file_path

delimiters

lineEnd

encoding

dataTypes

bounds

fromYear

get_shark_data

Default is "sharkweb_overview”.
Character. Language option for column headers. Possible values:

e "sv": Swedish.

* "en": English.

* "short”: Shortened version.

e "internal_key": Internal key (default).
Logical. If TRUE, the downloaded data is written to file_path on disk. If
FALSE (default), data is temporarily written to a file and then read into memory
as a data. frame, after which the temporary file is deleted.

Character. The file path where the data should be saved. Required if save_data
is TRUE. Ignored if save_data is FALSE.

Character. Specifies the delimiter used to separate values in the file, if save_data
is TRUE. Options are "point-tab” (tab-separated) or "point-semi"” (semicolon-
separated). Default is "point-tab”.

Character. Defines the type of line endings in the file, if save_data is TRUE.
Options are "win"” (Windows-style, \r\n) or "unix” (Unix-style, \n). Default
is "win”.

Character. Sets the file’s text encoding, if save_data is TRUE. Options are
"cp1252", "utf_8", "utf_16", or "latin_1". Defaultis "utf_8".

Character vector. Specifies data types to filter. Possible values include:

* "Bacterioplankton"
¢ "Chlorophyll"
 "Epibenthos"
* "Grey seal"
» "Harbour Porpoise"
* "Harbour seal"
* "Jellyfish"
* "Physical and Chemical"
* "Phytoplankton"
* "Picoplankton”
 "PlanktonBarcoding"
* "Primary production”
* "Profile"
* "Ringed seal"
* "Seal pathology"
* "Sedimentation”
» "Zoobenthos"
* "Zooplankton"
A numeric vector of length 4 specifying the geographical search boundaries

in decimal degrees, formatted as c(lon_min, lat_min, lon_max, lat_max),
e.g.,c(11, 58, 12, 59). Default is c() to include all data.

Integer (optional). The starting year for data retrieval. If set to NULL (default),
the function will use the earliest available year in SHARK.

get_shark_data 53

toYear Integer (optional). The ending year for data retrieval. If set to NULL (default),
the function will use the latest available year in SHARK.
months Integer vector. The months to retrieve data for, e.g., c(4, 5, 6) for April to
June.
parameters Character vector. Optional parameters to filter the results by, such as "Chlorophyll-a”.
checkStatus Character string. Optional status check to filter results.

qualityFlags Character vector. Specifies the quality flags to filter the data. By default, all data
are included, including those with the "B" flag (Bad).

deliverers Character vector. Specifies the data deliverers to filter by.
orderers Character vector. Orderers to filter by specific organizations or individuals.
projects Character vector. Projects to filter data by specific research or monitoring projects.
datasets Character vector. Datasets to filter data by specific datasets.
minSamplingDepth

Numeric. Minimum sampling depth (in meters) to filter the data.
maxSamplingDepth

Numeric. Maximum sampling depth (in meters) to filter the data.
redListedCategory

Character vector. Red-listed taxa for conservation filtering.
taxonName Character vector. Optional vector of taxa names to filter by.
stationName Character vector. Station names to filter data by specific stations.

vattenDistrikt Character vector. Water district names to filter by Swedish water districts.
seaBasins Character vector. Sea basins to filter by.
counties Character vector. Counties to filter by specific administrative regions.
municipalities Character vector. Municipalities to filter by.
waterCategories

Character vector. Water categories to filter by.
typOmraden Character vector. Type areas to filter by.
helcomOspar Character vector. HELCOM or OSPAR areas for regional filtering.
seaAreas Character vector. Sea area codes to filter by specific sea areas.

hideEmptyColumns
Logical. Whether to hide empty columns. Default is FALSE.

row_limit Numeric. Specifies the maximum number of rows that can be retrieved in a sin-
gle request. If the requested data exceeds this limit, the function automatically
downloads the data in yearly chunks (ignored when tableView = "report_x*").
The default value is 10 million rows.

prod Logical, whether to download from the production (TRUE, default) or test (FALSE)
SHARK server. Ignored if utv is TRUE.

utv Logical. Select UTV server when TRUE.
verbose Logical. Whether to display progress information. Default is TRUE.

54 get_shark_datasets

Details

This function sends a POST request to the SHARK API with the specified filters. The API returns
a delimited text file (e.g., tab- or semicolon-separated), which is downloaded and read into R as
a tibble. If the row_limit parameter is exceeded, the data is retrieved in yearly chunks and
combined into a single table. Adjusting the row_limit parameter may be necessary when retrieving
large datasets or detailed reports. Note that making very large requests (e.g., retrieving the entire
SHARK database) can be extremely time- and memory-intensive.

Value

A tibble containing the retrieved SHARK data, parsed from the API’s delimited text response.
Column types are inferred automatically.

Note

For large queries spanning multiple years or including several data types, retrieval can be time-
consuming and memory-intensive. Consider filtering by year, data type, or region for improved
performance.

See Also
* https://shark.smhi.se/en — SHARK database portal

e get_shark_options() — Retrieve available filters
e get_shark_table_counts() — Check table row counts before download

» get_shark_datasets() — To download datasets as zip-archives

Examples

Retrieve chlorophyll data from 2019 to 2020 for April to June

shark_data <- get_shark_data(fromYear = 2019, toYear = 2020,
months = c(4, 5, 6), dataTypes = "Chlorophyll”,
verbose = FALSE)

print(shark_data)

get_shark_datasets Download SHARK dataset zip archives

Description

Downloads one or more datasets (zip-archives) from the SHARK database (Swedish national ma-
rine environmental data archive) and optionally unzips them. The function matches provided dataset
names against all available SHARK datasets.

https://shark.smhi.se/en

get_shark_datasets 55

Usage

get_shark_datasets(
dataset_name,
save_dir = NULL,
prod = TRUE,
utv = FALSE,
unzip_file = FALSE,
return_df = FALSE,
encoding = "latin_1",
guess_encoding = TRUE,
verbose = TRUE

Arguments

dataset_name Character vector with one or more dataset names (or partial names). Each entry
will be matched against available SHARK dataset identifiers (e.g., "SHARK_Phytoplankton_2023_SMHI_|
for a specific dataset, or "SHARK_Phytoplankton” for all Phytoplankton datasets).

save_dir Directory where zip files (and optionally their extracted contents) should be
stored. Defaults to NULL. If NULL or "", a temporary directory is used.

prod Logical, whether to download from the production (TRUE, default) or test (FALSE)
SHARK server. Ignored if utv is TRUE.

utv Logical. Select UTV server when TRUE.

unzip_file Logical, whether to extract downloaded zip archives (TRUE) or only save them
(FALSE, default).

return_df Logical, whether to return a combined data frame with the contents of all down-
loaded datasets (TRUE) instead of a list of file paths (FALSE, default).

encoding Character. File encoding of shark_data.txt. Options: "cp1252", "utf_8",

"utf_16", "latin_1". Default is "latin_1". If guess_encoding = TRUE, de-
tected encoding overrides this value. Ignored if return_df is FALSE.

guess_encoding Logical. If TRUE (default), automatically detect file encoding. If FALSE, the
function uses only the user-specified encoding. Ignored if return_df is FALSE.

verbose Logical, whether to show download and extraction progress messages. Default
is TRUE.

Value

If return_df = FALSE, a named list of character vectors. Each element corresponds to one matched
dataset and contains either the path to the downloaded zip file (if unzip_file = FALSE) or the path
to the extraction directory (if unzip_file = TRUE). If return_df = TRUE, a single combined data
frame with all dataset contents, including a source column indicating the dataset.

See Also
https://shark.smhi.se/en for SHARK database.

get_shark_options() for listing available datasets.

get_shark_data() for downloading tabular data.

https://shark.smhi.se/en

56 get_shark_options

Examples

Get a specific dataset
get_shark_datasets("SHARK_Phytoplankton_2023_SMHI_BVVF", verbose = FALSE)

Get all Zooplankton datasets from 2022 and unzip them
get_shark_datasets(

dataset_name = "Zooplankton_2022",

unzip_file = TRUE,

verbose = FALSE
)

Get all Chlorophyll datasets and return as a combined data frame
combined_df <- get_shark_datasets(
dataset_name = "Chlorophyll”,
return_df = TRUE,
verbose = FALSE
)
head(combined_df)

get_shark_options Retrieve available search options from SHARK

Description
The get_shark_options() function retrieves available search options from the SHARK database.
It sends a GET request to the SHARK API and returns the results as a structured named list.
Usage

get_shark_options(prod = TRUE, utv = FALSE, unparsed = FALSE)

Arguments
prod Logical value that selects the production server when TRUE and the test server
when FALSE, unless utv is TRUE.
utv Logical value that selects the UTV server when TRUE.
unparsed Logical. If TRUE, returns the complete JSON response as a nested list without
parsing. Defaults to FALSE.
Details

This function sends a GET request to the /api/options endpoint of the SHARK API to retrieve
available search filters and options that can be used in SHARK data queries.

get_shark_statistics 57

Value

A named list of available search options from the SHARK API. If unparsed = TRUE, returns the
raw JSON structure as a list.

See Also

get_shark_data() for retrieving actual data from the SHARK API.
https://shark.smhi.se/en for the SHARK database portal.

Examples

Retrieve available search options (simplified)
shark_options <- get_shark_options()
names (shark_options)

Retrieve full unparsed JSON response
raw_options <- get_shark_options(unparsed = TRUE)

View available datatypes
print(shark_options$dataTypes)

get_shark_statistics Summarize numeric SHARK parameters with ranges and outlier
thresholds

Description

Downloads SHARK data for a given time period, filters to numeric parameters, and calculates
descriptive statistics and Tukey outlier thresholds.

Usage

get_shark_statistics(
fromYear = NULL,
toYear = NULL,
datatype = NULL,
group_col = NULL,
min_obs = 3,
max_non_numeric_frac = 0.05,
cache_result = FALSE,
prod = TRUE,
utv = FALSE,
verbose = TRUE

https://shark.smhi.se/en

58

Arguments

fromYear

toYear

datatype

group_col

min_obs

get_shark_statistics

Start year for download (numeric). Defaults to 5 years before the last complete
year.

End year for download (numeric). Defaults to the last complete year.

Optional, one or more datatypes to filter on (e.g. "Bacterioplankton”). If
NULL, all datatypes are included.

Optional column name in the SHARK data to group by (e.g. "station_name").
If provided, statistics will be computed separately for each group. Default is
NULL.

Minimum number of numeric observations required for a parameter to be in-
cluded (default: 3).

max_non_numeric_frac

cache_result

prod

utv

verbose

Details

Maximum allowed fraction of non-numeric values for a parameter to be kept
(default: 0.05).

Logical, whether to save the result in a persistent cache (statistics.rds) for
use by other functions. Default is FALSE.

Logical, whether to download from the production (TRUE, default) or test (FALSE)
SHARK server. Ignored if utv is TRUE.

Logical. Select UTV server when TRUE.

Logical, whether to show download progress messages. Default is TRUE.

By default, the function uses the previous five complete years. For example, if called in 2025 it will
use data from 2020-2024.

Value

A tibble with one row per parameter (and optionally per group) and the following columns:

parameter Parameter name (character).

datatype SHARK datatype (character).

min, Q1, median, Q3, max Observed quantiles.
P01, P05, P95, P99 1st, 5th, 95th and 99th percentiles.
IQR Interquartile range.

mean Arithmetic mean of numeric values.

sd Standard deviation of numeric values.

var Variance of numeric values.

cv Coefficient of variation (sd / mean).

mad Median absolute deviation.

mild_lower, mild_upper Lower/upper bounds for mild outliers (1.5 x IQR).

extreme_lower, extreme_upper Lower/upper bounds for extreme outliers (3 x IQR).

get_shark_table_counts 59

n Number of numeric observations used.
fromYear First year included in the SHARK data download (numeric).
toYear Last year included in the SHARK data download (numeric).

<group_col> Optional grouping column if provided.

Examples

Uses previous 5 years automatically, Chlorophyll data only
res <- get_shark_statistics(datatype = "Chlorophyll”, verbose = FALSE)
print(res)

Group by station name and save result in persistent cache
res_station <- get_shark_statistics(datatype = "Chlorophyll”,
group_col = "station_name”,
cache_result = TRUE,
verbose = FALSE)
print(res_station)

get_shark_table_counts
Retrieve SHARK data table row counts

Description

The get_shark_table_counts() function retrieves the number of records (row counts) from vari-
ous SHARK data tables based on specified filters such as year, months, data type, stations, and taxa.
To view available filter options, see get_shark_options.

Usage

get_shark_table_counts(
tableView = "sharkweb_overview”,
fromYear = 2019,
toYear = 2020,
months = c(),
dataTypes = c(),
parameters = c(),
orderers = c(),
qualityFlags = c(),
deliverers = c(),
projects = c(),
datasets = c(),
minSamplingDepth = "",
maxSamplingDepth = "",
checkStatus = "",
redListedCategory = c(),

60 get_shark_table_counts

taxonName = c(),
stationName = c(),
vattenDistrikt = c(),
seaBasins = c(),
counties = c(),
municipalities = c(),
waterCategories = c(),
typOmraden = c(),
helcomOspar = c(),
seaAreas = c(),

prod = TRUE,
utv = FALSE
)
Arguments
tableView Character. Specifies the view of the table to retrieve. Options include:

* "sharkweb_overview": Overview table

e "sharkweb_all": All available columns

* "sharkdata_bacterioplankton”: Bacterioplankton table
* "sharkdata_chlorophyll"”: Chlorophyll table

* "sharkdata_epibenthos”: Epibenthos table

* "sharkdata_greyseal”: Greyseal table

* "sharkdata_harbourporpoise”: Harbour porpoise table

* "sharkdata_harbourseal: Harbour seal table

* "sharkdata_jellyfish": Jellyfish table

* "sharkdata_physicalchemical”: Physical chemical table

* "sharkdata_physicalchemical_columns”: Physical chemical table: col-
umn view

* "sharkdata_phytoplankton”: Phytoplankton table

* "sharkdata_picoplankton”: Picoplankton table

* "sharkdata_planktonbarcoding"”: Plankton barcoding table

* "sharkdata_primaryproduction”: Primary production table

* "sharkdata_ringedseal”: Ringed seal table

* "sharkdata_sealpathology”: Seal pathology table

* "sharkdata_sedimentation”: Sedimentation table

¢ "sharkdata_zoobenthos": Zoobenthos table

* "sharkdata_zooplankton"”: Zooplankton table

* "report_sum_year_param"”: Report sum per year and parameter

* "report_sum_year_param_taxon": Report sum per year, parameter and
taxon

* "report_sampling_per_station”: Report sampling per station
* "report_obs_taxon": Report observed taxa

* "report_stations”: Report stations

* "report_taxon"”: Report taxa

get_shark_table_counts 61

Default is "sharkweb_overview".

fromYear Integer. The starting year for the data to retrieve. Default is 2019.
toYear Integer. The ending year for the data to retrieve. Default is 2020.
months Integer vector. The months to retrieve data for (e.g., c(4, 5, 6) for April to

June).
dataTypes Character vector. Specifies data types to filter, such as "Chlorophyll” or "Epibenthos”.
parameters Character vector. Optional. Parameters to filter results, such as "Chlorophyll-a”.
orderers Character vector. Optional. Orderers to filter data by specific organizations.

qualityFlags Character vector. Optional. Quality flags to filter data.

deliverers Character vector. Optional. Deliverers to filter data by data providers.
projects Character vector. Optional. Projects to filter data by specific research or moni-
toring projects.
datasets Character vector. Optional. Datasets to filter data by specific dataset names.
minSamplingDepth
Numeric. Optional. Minimum depth (in meters) for sampling data.
maxSamplingDepth
Numeric. Optional. Maximum depth (in meters) for sampling data.
checkStatus Character string. Optional. Status check to filter results.
redListedCategory
Character vector. Optional. Red-listed taxa for conservation filtering.
taxonName Character vector. Optional. Taxa names for filtering specific species or taxa.
stationName Character vector. Optional. Station names to retrieve data from specific stations.
vattenDistrikt Character vector. Optional. Water district names to filter data by Swedish water
districts.
seaBasins Character vector. Optional. Sea basin names to filter data by different sea areas.
counties Character vector. Optional. Counties to filter data within specific administrative

regions in Sweden.

municipalities Character vector. Optional. Municipalities to filter data within specific local
regions.

waterCategories
Character vector. Optional. Water categories to filter data by.

typOmraden Character vector. Optional. Type areas to filter data by specific areas.

helcomOspar Character vector. Optional. HELCOM or OSPAR areas for regional filtering.

seaAreas Character vector. Optional. Sea area codes for filtering by specific sea areas.
prod Logical. Select production server when TRUE (default). Ignored if utv is TRUE.
utv Logical. Select UTV server when TRUE.

Value

An integer representing the total number of rows in the requested SHARK table after applying the
specified filters.

62 get_toxin_list

See Also

https://shark.smhi.se/en for SHARK database.
get_shark_options to see filter options

get_shark_data to download SHARK data

Examples

Retrieve chlorophyll data for April to June from 2019 to 2020
shark_data_counts <- get_shark_table_counts(fromYear = 2019, toYear = 2020,

months = c(4, 5, 6), dataTypes = c("Chlorophyll”))
print(shark_data_counts)

get_toxin_list Retrieve marine biotoxin data from IOC-UNESCO Toxins Database

Description

This function collects data from the IOC-UNESCO Toxins Database and returns information about
toxins.

Usage

get_toxin_list(return_count = FALSE)

Arguments

return_count Logical. If TRUE, the function returns the count of toxins available in the database.
If FALSE (default), it returns detailed toxin data.

Value

If return_count = TRUE, the function returns a numeric value representing the number of toxins in
the database. Otherwise, it returns a tibble of toxins with detailed information.

See Also

https://toxins.hais.ioc-unesco.org/ for IOC-UNESCO Toxins Database.

https://shark.smhi.se/en
https://toxins.hais.ioc-unesco.org/
https://toxins.hais.ioc-unesco.org/

get_worms_classification 63

Examples

Retrieve the full list of toxins
toxin_list <- get_toxin_list()
head(toxin_list)

Retrieve only the count of toxins
toxin_count <- get_toxin_list(return_count = TRUE)
print(toxin_count)

get_worms_classification
Retrieve hierarchical classification from WoRMS

Description

Retrieves the hierarchical taxonomy for one or more AphialDs from the World Register of Marine
Species (WoRMS) and returns it in a wide format. Optionally, a hierarchy string column can be
added that concatenates ranks.

Usage

get_worms_classification(
aphia_ids,
add_rank_to_hierarchy = FALSE,
verbose = TRUE

Arguments

aphia_ids Numeric vector of AphialDs to retrieve classification for. Must not be NULL or
empty. Duplicates are allowed and will be preserved in the output.
add_rank_to_hierarchy
Logical (default FALSE). If TRUE, the hierarchy string prepends rank names
(e.g., [Kingdom] Animalia - [Phylum] Chordata) to each taxon name in the
worms_hierarchy column. Only applies if worms_hierarchy is present.

verbose Logical (default TRUE). If TRUE, prints progress messages and a progress bar
during data retrieval.
Details
The function performs the following steps:

1. Validates input AphialDs and removes NA values.
2. Retrieves the hierarchical classification for each AphialD using worrms: :wm_classification().

3. Converts the hierarchy to a wide format with one column per rank.

64

get_worms_records

4. Adds a worms_hierarchy string concatenating all ranks.

5. Preserves input order and duplicates.

Value

A tibble where each row corresponds to an input AphialD. Typical columns include:

aphia_id The AphialD of the taxon (matches input).
scientific_name The last scientific name in the hierarchy for this AphialD.

taxonomic ranks Columns for each rank present in the WoRMS hierarchy (e.g., Kingdom, Phy-
lum, Class, Order, Family, Genus, Species). Missing ranks are NA.

worms_hierarchy A concatenated string of all ranks for this AphialD. Added for every row if
wm_classification() returned hierarchy data. Format depends on add_rank_to_hierarchy.

See Also

wm_classification, https://marinespecies.org/

Examples

Single AphialD
single_taxa <- get_worms_classification(109604, verbose = FALSE)
print(single_taxa)

Multiple AphialDs
multiple_taxa <- get_worms_classification(c(109604, 376667), verbose = FALSE)
print(multiple_taxa)

Hierarchy with ranks in the string

with_rank <- get_worms_classification(c(109604, 376667),
add_rank_to_hierarchy = TRUE,
verbose = FALSE)

Print hierarchy columns with ranks
print(with_rank$worms_hierarchy[1])

Compare with result when add_rank_to_hierarchy = FALSE
print(multiple_taxa$worms_hierarchy[1])

get_worms_records Retrieve WoRMS records

Description

This function retrieves records from the WoRMS (World Register of Marine Species) database using
the worrms R package for a given list of Aphia IDs. If the retrieval fails, it retries a specified number
of times before stopping.

https://marinespecies.org/

get_worms_records 65

Usage

get_worms_records(
aphia_ids,
max_retries = 3,
sleep_time = 10,
verbose = TRUE,
aphia_id = deprecated()

)
Arguments
aphia_ids A vector of Aphia IDs for which records should be retrieved.
max_retries An integer specifying the maximum number of retry attempts for each Aphia ID
in case of failure. Default is 3.
sleep_time A numeric value specifying the time (in seconds) to wait between retry attempts.
Default is 10 seconds.
verbose A logical indicating whether to print progress messages. Default is TRUE.
aphia_id [Deprecated] Use aphia_ids instead.
Details

The function attempts to fetch records for each Aphia ID in the provided vector. If a retrieval fails,
it retries up to the specified max_retries, with a pause of sleep_time seconds between attempts.
If all retries fail for an Aphia ID, the function stops with an error message.

Value

A tibble containing the retrieved WoRMS records for the provided Aphia IDs. Each row corre-
sponds to one Aphia ID.

See Also

https://marinespecies.org/ for WoRMS website.
https://CRAN.R-project.org/package=worrms

Examples

Example usage with a vector of Aphia IDs
aphia_ids <- c(12345, 67890, 112233)
worms_records <- get_worms_records(aphia_ids, verbose = FALSE)

print(worms_records)

https://marinespecies.org/
https://CRAN.R-project.org/package=worrms

66 get_worms_taxonomy_tree

get_worms_taxonomy_tree
Retrieve hierarchical taxonomy data from WoRMS

Description

Retrieves the hierarchical taxonomy for one or more AphialDs from the World Register of Marine
Species (WoRMS). Optionally, the function can include all descendants of taxa at a specified rank
and/or synonyms for all retrieved taxa.

Usage
get_worms_taxonomy_tree(
aphia_ids,
add_descendants = FALSE,
add_descendants_rank = "Species”,

add_synonyms = FALSE,
add_hierarchy = FALSE,
add_rank_to_hierarchy = FALSE,
verbose = TRUE

Arguments

aphia_ids Numeric vector of AphialDs to retrieve taxonomy for. Must not be missing or
all NA.

add_descendants
Logical (default FALSE). If TRUE, retrieves all child taxa for each taxon at the
rank specified by add_descendants_rank.

add_descendants_rank
Character (default "Species”). The taxonomic rank of descendants to retrieve.
For example, if set to "Species”, the function will collect all species belonging
to each genus present in the initial dataset.

add_synonyms Logical (default FALSE). If TRUE, retrieves synonym records for all retrieved
taxa and appends them to the dataset.

add_hierarchy Logical (default FALSE). If TRUE, adds a hierarchy column that contains the
concatenated hierarchy of each taxon (e.g. Kingdom - Phylum - Class).
add_rank_to_hierarchy
Logical (default FALSE). If TRUE, the hierarchy string prepends rank names
(e.g., [Kingdom] Animalia - [Phylum] Chordata) to each taxon name in the
hierarchy column. Only used if add_hierarchy = TRUE.

verbose Logical (default TRUE). If TRUE, prints progress messages and progress bars
during data retrieval.

get_worms_taxonomy_tree 67

Details
The function performs the following steps:

1. Validates input AphialDs and removes NA values.
2. Retrieves the hierarchical classification for each AphialD using worrms: :wm_classification().

3. Optionally retrieves all descendants at the rank specified by add_descendants_rank if add_descendants
= TRUE.

4. Optionally retrieves synonyms for all retrieved taxa if add_synonyms = TRUE.
5. Optionally adds a hierarchy column if add_hierarchy = TRUE.

6. Returns a combined, distinct dataset of all records.

Value

A tibble containing detailed WoRMS records for all requested AphialDs, including optional de-
scendants and synonyms. Typical columns include:

AphialD The AphialD of the taxon.

parentNameUsagelD The AphialD of the parent taxon.

scientificname Scientific name of the taxon.

rank Taxonomic rank (e.g., Kingdom, Phylum, Genus, Species).

status Taxonomic status (e.g., accepted, unaccepted).

valid_AphialD AphialD of the accepted taxon, if the record is a synonym.

species Added only if a Species rank exists in the retrieved data and if add_hierarchy = TRUE;
otherwise not present.

parentName Added only if a parentName rank exists in the retrieved data and if add_hierarchy
= TRUE; otherwise not present.

hierarchy Added only if add_hierarchy = TRUE and hierarchy data are available. Contains a con-
catenated string of the taxonomic path.

... Additional columns returned by WoRMS, including authorship and source information.

See Also

add_worms_taxonomy, construct_dyntaxa_table
wm_classification, wn_children, wm_synonyms

https://marinespecies.org/ for the WoRMS website.

Examples

Retrieve hierarchy for a single AphialD
get_worms_taxonomy_tree(aphia_ids = 109604, verbose = FALSE)

Retrieve hierarchy including species-level descendants
get_worms_taxonomy_tree(

aphia_ids = c(109604, 376667),

add_descendants = TRUE,

https://marinespecies.org/

68 is_in_dyntaxa

verbose = FALSE
)

Retrieve hierarchy including hierarchy column
get_worms_taxonomy_tree(

aphia_ids = c(109604, 376667),

add_hierarchy = TRUE,

verbose = FALSE

is_in_dyntaxa Check if taxon names exist in Dyntaxa

Description

Checks whether the supplied scientific names exist in the Swedish taxonomic database Dyntaxa.
Optionally, returns a data frame with taxon names, taxon IDs, and match status.

Usage

is_in_dyntaxa(
taxon_names,
subscription_key = Sys.getenv("DYNTAXA_KEY"),
use_dwca = FALSE,
return_df = FALSE,
verbose = FALSE

Arguments

taxon_names Character vector of taxon names to check.

subscription_key
A Dyntaxa API subscription key. By default, the key is read from the environ-
ment variable DYNTAXA_KEY.

You can provide the key in three ways:

* Directly as a parameter: is_in_dyntaxa("Skeletonema marinoi”, subscription_key

= "your_key_here").

¢ Temporarily for the session: Sys.setenv(DYNTAXA_KEY = "your_key_here").

After this, you do not need to pass subscription_key to the function.
* Permanently across sessions by adding it to your ~/.Renviron file. Use

usethis::edit_r_environ() to open the file, then add: DYNTAXA_KEY=your_key_here.

After this, you do not need to pass subscription_key to the function.

use_dwca Logical; if TRUE, uses the DWCA version of Dyntaxa instead of querying the
APL

load_shark4r_fields 69

return_df Logical; if TRUE, returns a data frame with columns taxon_name, taxon_id,
and match. Default is FALSE (returns a logical vector).
verbose Logical; if TRUE, prints messages about unmatched taxa.
Details

A valid Dyntaxa API subscription key is required. You can request a free key for the "Taxonomy"
service from the ArtDatabanken API portal: https://api-portal.artdatabanken.se/

Value

If return_df = FALSE (default), a logical vector indicating whether each input name was found in
Dyntaxa. Returned invisibly if verbose = TRUE. If return_df = TRUE, a data frame with columns:
* taxon_name: original input names
* taxon_id: corresponding Dyntaxa taxon IDs (NA if not found)

* match: logical indicating presence in Dyntaxa

Examples

Not run:

Using an environment variable (recommended for convenience)
Sys.setenv(DYNTAXA_KEY = "your_key_here")
is_in_dyntaxa(c("Skeletonema marinoi”, "Nonexistent species”))

Return a data frame instead of logical vector
is_in_dyntaxa(c("Skeletonema marinoi”, "Nonexistent species”), return_df = TRUE)

Or pass the key directly
is_in_dyntaxa("Skeletonema marinoi”, subscription_key = "your_key_here")

Suppress messages
is_in_dyntaxa("Skeletonema marinoi”, verbose = FALSE)

End(Not run)

load_shark4r_fields Load SHARKA4R fields from GitHub

Description
This function downloads and sources the SHARK4R required and recommended field definitions
directly from the SHARKA4R-statistics GitHub repository.

Usage

load_shark4r_fields(verbose = TRUE)

https://api-portal.artdatabanken.se/
https://github.com/nodc-sweden/SHARK4R-statistics

70 load_shark4r_fields

Arguments
verbose Logical; if TRUE (default), prints progress messages during download and load-
ing.
Details

The definitions are stored in an R script (fields.R) located in the fields/ folder of the repository.
The function sources this file directly from GitHub into the current R session.

The sourced script defines two main objects:

* required_fields — vector or data frame of required SHARK fields.

¢ recommended_fields — vector or data frame of recommended SHARK fields.

The output of this function can be directly supplied to the check_fields function through its
field_definitions argument for validating SHARKA4R data consistency.

If sourcing fails (e.g., due to a network issue or repository changes), the function throws an error
with a descriptive message.

Value
Invisibly returns a list with two elements:

required_fields Object containing required SHARK fields.
recommended_fields Object containing recommended SHARK fields.

See Also

check_fields for validating datasets using the loaded field definitions (as field_definitions).
load_shark4r_stats for loading precomputed SHARK4R statistics,

Examples

Load SHARK4R field definitions from GitHub
fields <- load_shark4r_fields(verbose = FALSE)

Access required or recommended fields for the first entry
fields[[1]]$required
fields[[1]]1$recommended

Not run:
Use the loaded definitions in check_fields()
check_fields(my_data, field_definitions = fields)

End(Not run)

load_shark4r_stats 71

load_shark4r_stats Load SHARKA4R statistics from GitHub

Description

This function downloads and loads precomputed SHARKA4R statistical data (e.g., threshold or sum-
mary statistics) directly from the SHARK4R-statistics GitHub repository. The data are stored as
.rds files and read into R as objects.

Usage
load_shark4r_stats(file_name = "sea_basin.rds", verbose = TRUE)
Arguments
file_name Character string specifying the name of the .rds file to download. Defaults to
"sea_basin.rds".
verbose Logical; if TRUE (default), prints progress messages during download and load-
ing.
Details

The function retrieves the file from the GitHub repository’s data/ folder. It temporarily downloads
the file to the local system and then reads it into R using readRDS().

If the download fails (e.g., due to a network issue or invalid filename), the function throws an error
with a descriptive message.

Value

An R object (typically a tibble or data. frame) read from the specified . rds file.

See Also

check_outliers for detecting threshold exceedances using the loaded statistics, get_shark_statistics
for generating and caching statistical summaries used in SHARK4R. scatterplot for generating
interactive plots with threshold values.

Examples

Load the default SHARK4R statistics file
stats <- load_shark4r_stats(verbose = FALSE)
print(stats)

Load a specific file
thresholds <- load_shark4r_stats("scientific_name.rds”, verbose = FALSE)
print(thresholds)

https://github.com/nodc-sweden/SHARK4R-statistics

72

lookup_xy

lookup_xy

Lookup spatial information for geographic points

Description

Retrieves shore distance, environmental grids, and area values for given coordinates. Coordinates
may be supplied either through a data frame or as separate numeric vectors.

Usage
lookup_xy (
data = NULL,
lon = NULL,
lat = NULL,
shoredistance
grids = TRUE,

areas = FALSE
as_data_frame

Arguments

data

lon

lat

shoredistance
grids

areas

as_data_frame

Details

TRUE,

’

TRUE

Optional data frame containing coordinate columns. The expected names are
sample_longitude_dd and sample_latitude_dd. These must be numeric and
fall within valid geographic ranges.

Optional numeric vector of longitudes. Must be supplied together with lat
when used. Ignored when a data frame is provided unless both lon and lat are
set.

Optional numeric vector of latitudes. Must be supplied together with 1on when
used.

Logical; if TRUE, distance to the nearest shore is included.
Logical; if TRUE, environmental grid values are included.

Logical or numeric. When logical, TRUE requests area values at zero radius, and
FALSE disables area retrieval. A positive integer specifies the search radius in
meters for area values.

Logical; if TRUE, the result is returned as a data frame. When FALSE, the result
is returned as a list.

* When both vector inputs and a data frame are provided, the vector inputs take precedence.

* Coordinates are validated and cleaned before lookup, and only unique values are queried.

* Queries are processed in batches to avoid overloading the remote service.

» Area retrieval accepts either a logical flag or a radius. A radius of zero corresponds to request-
ing a single area value.

match_algaebase_genus 73

* Final results are reordered to match the original input positions.

* The function has been modified from the obistools package (Provoost and Bosch, 2024).

Value

A data frame or list, depending on as_data_frame. Invalid coordinates produce NA entries (data
frame) or NULL elements (list). Duplicate input coordinates return repeated results.

References

Provoost P, Bosch S (2024). “obistools: Tools for data enhancement and quality control” Ocean
Biodiversity Information System. Intergovernmental Oceanographic Commission of UNESCO. R
package version 0.1.0, https://iobis.github.io/obistools/.

See Also

check_onland, check_depth, https://iobis.github.io/xylookup/ —OBIS xylookup web ser-
vice

Examples

Using a data frame

df <- data.frame(sample_longitude_dd = c(10.9, 18.3),
sample_latitude_dd = c(58.1, 58.3))

lookup_xy (df)

Area search within a radius
lookup_xy(df, areas = 500)

Using separate coordinate vectors
lookup_xy(lon = c(10.9, 18.3), lat = c(58.1, 58.3))

match_algaebase_genus Search AlgaeBase for information about a genus of algae

Description

This function searches the AlgaeBase API for genus information and returns detailed taxonomic
data, including higher taxonomy, taxonomic status, scientific names, and other related metadata.

Usage

match_algaebase_genus(
genus,
subscription_key = Sys.getenv("ALGAEBASE_KEY"),
higher = TRUE,

https://iobis.github.io/obistools/
https://iobis.github.io/xylookup/

74 match_algaebase_genus

unparsed = FALSE,
newest_only = TRUE,
exact_matches_only = TRUE,
apikey = deprecated()

Arguments

genus The genus name to search for (character string). This parameter is required.
subscription_key
A character string containing the API key for accessing the AlgaeBase API. By
default, the key is read from the environment variable ALGAEBASE _KEY.
You can provide the key in three ways:
* Directly as a parameter: match_algaebase_genus("”Skeletonema”, subscription_key
= "your_key_here").
* Temporarily for the session: Sys.setenv(ALGAEBASE_KEY = "your_key_here").
After this, you do not need to pass subscription_key to the function.
* Permanently across sessions by adding it to your ~/.Renviron file. Use
usethis::edit_r_environ() to open the file, then add: ALGAEBASE_KEY=your_key_here.
After this, you do not need to pass subscription_key to the function.

higher A boolean flag indicating whether to include higher taxonomy in the output
(default is TRUE).

unparsed A boolean flag indicating whether to return the raw JSON output from the API
(default is FALSE).

newest_only A boolean flag to return only the most recent entry (default is TRUE).

exact_matches_only
A boolean flag to limit results to exact matches (default is TRUE).

apikey [Deprecated] Use subscription_key instead.

Details

A valid API key is requested from the AlgaeBase team.

Value
A tibble with the following columns:

* id — AlgaeBase identifier.

* accepted_name — Accepted scientific name (if different from the input).

e input_name — The genus name supplied by the user.

e input_match — Indicator of exact match (1 = exact, @ = not exact).

* currently_accepted — Indicator if the taxon is currently accepted (1 = TRUE, @ = FALSE).
* genus_only — Indicator if the search was for a genus only (1 = genus, @ = genus + species).
* kingdom, phylum, class, order, family — Higher taxonomy (returned if higher = TRUE).

* taxonomic_status — Status of the taxon (e.g., currently accepted, synonym, unverified).

match_algaebase_species 75

* taxon_rank — Taxonomic rank of the accepted name (e.g., genus, species).
* mod_date — Date when the entry was last modified.
* long_name — Full scientific name including author and date (if available).

¢ authorship — Author information (if available).

See Also

https://www.algaebase.org/ for AlgaeBase website.

Examples
Not run:
match_algaebase_genus(”Anabaena”, subscription_key = "your_api_key")

End(Not run)

match_algaebase_species
Search AlgaeBase for information about a species of algae

Description

This function searches the AlgaeBase API for species based on genus and species names. It allows
for flexible search parameters such as filtering by exact matches, returning the most recent results,
and including higher taxonomy details.

Usage

match_algaebase_species(
genus,
species,
subscription_key = Sys.getenv("ALGAEBASE_KEY"),
higher = TRUE,
unparsed = FALSE,
newest_only = TRUE,
exact_matches_only = TRUE,
apikey = deprecated()

Arguments

genus A character string specifying the genus name.

species A character string specifying the species or specific epithet.

https://www.algaebase.org/

76 match_algaebase_species

subscription_key
A character string containing the API key for accessing the AlgaeBase API. By
default, the key is read from the environment variable ALGAEBASE _KEY.

You can provide the key in three ways:

¢ Directly as a parameter: match_algaebase_species("Skeletonema”,
"marinoi”, subscription_key = "your_key_here").

* Temporarily for the session: Sys.setenv(ALGAEBASE_KEY = "your_key_here").
After this, you do not need to pass subscription_key to the function.

* Permanently across sessions by adding it to your ~/.Renviron file. Use
usethis::edit_r_environ() to open the file, then add: ALGAEBASE_KEY=your_key_here.
After this, you do not need to pass subscription_key to the function.

higher A logical value indicating whether to include higher taxonomy details (default
is TRUE).

unparsed A logical value indicating whether to print the full JSON response from the API
(default is FALSE).

newest_only A logical value indicating whether to return only the most recent entries (default
is TRUE).

exact_matches_only
A logical value indicating whether to return only exact matches (default is TRUE).

apikey [Deprecated] Use subscription_key instead.

Details

A valid API key is requested from the AlgaeBase team.

This function queries the AlgaeBase API for species based on the genus and species names, and
filters the results based on various parameters. The function handles different taxonomic ranks and
formats the output for easy use. It can merge higher taxonomy data if requested.

Value

A tibble with details about the species, including:

* taxonomic_status — The current status of the taxon (e.g., accepted, synonym, unverified).
* taxon_rank — The rank of the taxon (e.g., species, genus).

* accepted_name — The currently accepted scientific name, if applicable.

¢ authorship — Author information for the scientific name (if available).

* mod_date — Date when the taxonomic record was last modified.

e ... — Other relevant information returned by the data source.

See Also

https://www.algaebase.org/ for AlgaeBase website.

https://www.algaebase.org/

match_algaebase_taxa 77

Examples

Not run:
Search for a species with exact matches only, return the most recent results
result <- match_algaebase_species(

genus = "Skeletonema”, species = "marinoi”, subscription_key = "your_api_key"

)

Print result
print(result)

End(Not run)

match_algaebase_taxa Search AlgaeBase for taxonomic information

Description

This function queries the AlgaeBase API to retrieve taxonomic information for a list of algae names
based on genus and (optionally) species. It supports exact matching, genus-only searches, and
retrieval of higher taxonomic ranks.

Usage

match_algaebase_taxa(
genera,
species,
subscription_key = Sys.getenv("ALGAEBASE_KEY"),
genus_only = FALSE,
higher = TRUE,
unparsed = FALSE,
exact_matches_only = TRUE,
sleep_time = 1,
newest_only = TRUE,
verbose = TRUE,
apikey = deprecated(),
genus = deprecated()

Arguments
genera A character vector of genus names.
species A character vector of species names corresponding to the genera vector. Must

be the same length as genera.

subscription_key
A character string containing the API key for accessing the AlgaeBase API. By
default, the key is read from the environment variable ALGAEBASE_KEY. You can
provide the key in three ways:

78 match_algaebase_taxa

* Directly as a parameter: match_algaebase_taxa("Skeletonema”, "marinoi”,
subscription_key = "your_key_here")

* Temporarily for the session: Sys.setenv(ALGAEBASE_KEY = "your_key_here").
After this, you do not need to pass subscription_key to the function.

* Permanently across sessions by adding it to your ~/.Renviron file. Use
usethis::edit_r_environ() to open the file, then add: ALGAEBASE_KEY=your_key_here.
After this, you do not need to pass subscription_key to the function.

genus_only Logical. If TRUE, searches are based solely on the genus name, ignoring species.
Defaults to FALSE.

higher Logical. If TRUE, includes higher taxonomy (e.g., kingdom, phylum) in the out-
put. Defaults to TRUE.

unparsed Logical. If TRUE, returns raw JSON output instead of a tibble. Defaults to
FALSE.

exact_matches_only
Logical. If TRUE, restricts results to exact matches. Defaults to TRUE.

sleep_time Numeric. The delay (in seconds) between consecutive AlgaeBase API queries.
Defaults to 1. A delay is recommended to avoid overwhelming the API for large
queries.

newest_only A logical value indicating whether to return only the most recent entries (default
is TRUE).

verbose Logical. If TRUE, displays a progress bar to indicate query status. Defaults to
TRUE.

apikey [Deprecated] Use subscription_key instead.

genus [Deprecated] Use genera instead.

Details

A valid API key is requested from the AlgaeBase team.

Scientific names can be parsed using the parse_scientific_names() function before being pro-
cessed by match_algaebase_taxa().

Duplicate genus-species combinations are handled efficiently by querying each unique combination
only once. Genus-only searches are performed when genus_only = TRUE or when the species name
is missing or invalid. Errors during API queries are gracefully handled by returning rows with NA
values for missing or unavailable data.

The function allows for integration with data analysis workflows that require resolving or verifying
taxonomic names against AlgaeBase.

Value

A tibble containing taxonomic information for each input genus—species combination. The fol-
lowing columns may be included:

* id — AlgaeBase ID (if available).
* kingdom, phylum, class, order, family — Higher taxonomy (returned if higher = TRUE).

* genus, species, infrasp — Genus, species, and infraspecies names (if applicable).

match_dyntaxa_taxa 79

* taxonomic_status — Status of the name (e.g., accepted, synonym, unverified).

* currently_accepted — Logical indicator whether the name is currently accepted (TRUE/FALSE).
* accepted_name — Currently accepted name if different from the input name.

e input_name — The name supplied by the user.

e input_match — Indicator of exact match (1 = exact, @ = not exact).

* taxon_rank — Taxonomic rank of the accepted name (e.g., genus, species).

* mod_date — Date when the entry was last modified in AlgaeBase.

* long_name — Full species name with authorship and date.

* authorship — Author(s) associated with the species name.

See Also

https://www.algaebase.org/ for AlgaeBase website.

parse_scientific_names for parsing taxonomic names before passing them to the function.

Examples
Not run:
Example with genus and species vectors
genus_vec <- c("Thalassiosira”, "Skeletonema”, "Tripos")
species_vec <- c("pseudonana”, "costatum”, "furca")

algaebase_results <- match_algaebase_taxa(
genera = genus_vec,
species = species_vec,
subscription_key = "your_api_key",
exact_matches_only = TRUE,
verbose = TRUE

)

head(algaebase_results)

End(Not run)

match_dyntaxa_taxa Match Dyntaxa taxon names

Description

This function matches a list of taxon names against the SLU Artdatabanken API (Dyntaxa) and
retrieves the best matches along with their taxon IDs.

https://www.algaebase.org/

80

Usage

match_dyntaxa_taxa

match_dyntaxa_taxa(

taxon_names,

subscription_key = Sys.getenv("DYNTAXA_KEY"),
multiple_options = FALSE,

searchFields = "Both”,

isRecommended = "NotSet”,
isOkForObservationSystems = "NotSet",

culture = "sv_SE",

page = 1,

pageSize = 100,
verbose = TRUE

Arguments

taxon_names

A vector of taxon names to match.

subscription_key

A Dyntaxa API subscription key. By default, the key is read from the environ-
ment variable DYNTAXA_KEY.

You can provide the key in three ways:
* Directly as a parameter: match_dyntaxa_taxa("Skeletonema marinoi”,
subscription_key = "your_key_here").
* Temporarily for the session: Sys.setenv(DYNTAXA_KEY = "your_key_here").
After this, you do not need to pass subscription_key to the function.

* Permanently across sessions by adding it to your ~/.Renviron file. Use
usethis::edit_r_environ() to open the file, then add: DYNTAXA_KEY=your_key_here.
After this, you do not need to pass subscription_key to the function.

multiple_options

searchFields

isRecommended

Logical. If TRUE, the function will return multiple matching names. Default is
FALSE, selecting the first match.

A character string indicating the search fields. Defaults to *Both’.

A character string indicating whether the taxon is recommended. Defaults to
"NotSet’.

isOkForObservationSystems

culture
page
pageSize

verbose

Details

A character string indicating whether the taxon is suitable for observation sys-
tems. Defaults to "NotSet’.

A character string indicating the culture. Defaults to *sv_SE’.

An integer specifying the page number for pagination. Defaults to 1.
An integer specifying the page size for pagination. Defaults to 100.
Logical. Print progress bar. Default is TRUE.

A valid Dyntaxa API subscription key is required. You can request a free key for the "Taxonomy"
service from the ArtDatabanken API portal: https://api-portal.artdatabanken.se/

https://api-portal.artdatabanken.se/

match_station 81

Note: Please review the API conditions and register for access before using the API. Data collected
through the API is stored at SLU Artdatabanken. Please also note that the authors of SHARK4R are
not affiliated with SLU Artdatabanken.

Value

A tibble containing the search pattern, taxon ID, and best match for each taxon name.

See Also

SLU Artdatabanken API Documentation

Examples

Not run:

Match taxon names against SLU Artdatabanken API

matched_taxa <- match_dyntaxa_taxa(c("Homo sapiens”, "Canis lupus”), "your_subscription_key")
print(matched_taxa)

End(Not run)

match_station Match station names against SMHI station list

Description

Matches reported station names in your dataset against a curated station list ("station.txt"),
which is synced with "Stationsregistret": https://stationsregister.miljodatasamverkan.
se/.

Usage

match_station(names, station_file = NULL, try_synonyms = TRUE, verbose = TRUE)

Arguments

names Character vector of station names to match.

station_file Optional path to a custom station file (tab-delimited). If NULL (default), the
function will first attempt to use the NODC_CONFIG environment variable, and if
that fails, will use the bundled "station.zip" from the SHARK4R package.

try_synonyms Logical; if TRUE (default), unmatched names are also compared against the
SYNONYM_NAMES column in the database.

verbose Logical. If TRUE, messages will be displayed during execution. Defaults to
TRUE.

https://www.slu.se/artdatabanken/rapportering-och-fynd/oppna-data-och-apier/
https://api-portal.artdatabanken.se/
https://api-portal.artdatabanken.se/
https://stationsregister.miljodatasamverkan.se/
https://stationsregister.miljodatasamverkan.se/

82 match _worms_taxa

Details

This function is useful for validating station names and identifying any unmatched or misspelled
entries.

If try_synonyms = TRUE, unmatched station names are also compared against the SYNONYM_NAMES
column in the station database, splitting multiple synonyms separated by <or>.

The function first checks if a station file path is provided via the station_file argument. If not,
it looks for the NODC_CONFIG environment variable. This variable can point to a folder where the
NODC (Swedish National Oceanographic Data Center) configuration and station file are stored,
typically including:

* <NODC_CONFIG>/config/station.txt

If NODC_CONFIG is set and the folder exists, the function will use station. txt from that location.
Otherwise, it falls back to the bundled station.zip included in the SHARK4R package.

Value
A data frame with two columns:

reported_station_name The input station names.

match_type Logical; TRUE if the station was found in the SMHI station list (including synonyms
if enabled), otherwise FALSE.

Examples

Example stations
stations <- c(”ANHOLT E"”, "BY5 BORNHOLMSDJ", "STX999")

Check if stations names are in stations.txt (including synonyms)
match_station(stations, try_synonyms = TRUE, verbose = FALSE)

match_worms_taxa Retrieve WoRMS records by taxonomic names with retry logic

Description

This function retrieves records from the WoRMS database using the worrms R package for a vector
of taxonomic names. It includes retry logic to handle temporary failures and ensures all names are
processed. The function can query all names at once using a bulk API call or iterate over names
individually.

match _worms_taxa 83

Usage

match_worms_taxa(
taxa_names,
fuzzy = TRUE,
best_match_only = TRUE,
max_retries = 3,
sleep_time = 10,
marine_only = TRUE,
bulk = FALSE,
chunk_size = 500,
verbose = TRUE

)
Arguments
taxa_names A character vector of taxonomic names for which to retrieve records.
fuzzy A logical value indicating whether to perform a fuzzy search. Default is TRUE.

Note: Fuzzy search is only applied in iterative mode (bulk = FALSE) and is
ignored in bulk mode.
best_match_only

A logical value indicating whether to automatically select the first match and
return a single match. Default is TRUE.

max_retries Integer specifying the maximum number of retries for the request in case of
failure. Default is 3.

sleep_time Numeric specifying the number of seconds to wait before retrying a failed re-
quest. Default is 10.

marine_only Logical indicating whether to restrict results to marine taxa only. Default is
TRUE.
bulk Logical indicating whether to perform a bulk API call for all unique names at

once. Default is FALSE.

chunk_size Integer specifying the maximum number of taxa per bulk API request. Default is
500. Only used when bulk = TRUE. WoRMS API may reject very large requests,
so chunking prevents overload.

verbose Logical indicating whether to print progress messages. Default is TRUE.

Details

* If bulk = TRUE, all unique names are sent to the API in a single request. Fuzzy matching is
ignored.

 If bulk = FALSE, the function iterates over names individually, optionally using fuzzy match-
ing.

* The function retries failed requests up to max_retries times, pausing for sleep_time sec-
onds between attempts.

¢ Names for which no records are found will have status = "no content” and AphiaID = NA.

84 parse_scientific_names

* Names are cleaned before being passed to the API call by converting them to UTF-8, replacing
problematic symbols with spaces, removing trailing periods, collapsing extra spaces and by
trimming whitespace.

Value

A tibble containing the retrieved WoRMS records. Each row corresponds to a record for a taxo-
nomic name. Repeated taxa in the input are preserved in the output.

See Also

https://marinespecies.org/ for WoRMS website.
https://CRAN.R-project.org/package=worrms

Examples

Retrieve WoORMS records iteratively for two taxonomic names
records <- match_worms_taxa(c(”"Amphidinium”, "Karenia"),
max_retries = 3,
sleep_time = 5,
marine_only = TRUE,
verbose = FALSE)
print(records)

Retrieve WoRMS records in bulk mode (faster for many names)
records_bulk <- match_worms_taxa(c("Amphidinium”, "Karenia”, "Navicula"),
bulk = TRUE,
marine_only = TRUE,
verbose = FALSE)

parse_scientific_names
Parse scientific names into genus and species components.

Description

This function processes a character vector of scientific names, splitting them into genus and species
components. It handles binomial names (e.g., "Homo sapiens"), removes undesired descriptors
(e.g.,’Cfr., ’cf.’, ’sp.’, ’spp.”), and manages cases involving varieties, subspecies, or invalid species
names. Special characters and whitespace are handled appropriately.

Usage

parse_scientific_names(
scientific_names,
remove_undesired_descriptors = TRUE,

https://marinespecies.org/
https://CRAN.R-project.org/package=worrms

parse_scientific_names 85

remove_subspecies = TRUE,
remove_invalid_species = TRUE,
encoding = "UTF-8",
scientific_name = deprecated()

Arguments
scientific_names

A character vector containing scientific names, which may include binomials,
additional descriptors, or varieties.

remove_undesired_descriptors
Logical, if TRUE, undesired descriptors (e.g., "Cfr.’, ’cf.’, *colony’, ’cells’, etc.)

are removed. Default is TRUE.
remove_subspecies

Logical, if TRUE, subspecies/variety descriptors (e.g., ’var.’, ’subsp.’, ’f.’, etc.)
are removed. Default is TRUE.
remove_invalid_species

Logical, if TRUE, invalid species names (e.g., sp.’, ’spp.’) are removed. Default
is TRUE.

encoding A string specifying the encoding to be used for the input names (e.g., "'UTF-8).

Default is "UTF-8’.
scientific_name

[Deprecated] Use scientific_names instead.
Value
A tibble with two columns:
e genus — Genus names.

* species — Species names (empty if unavailable or invalid). Invalid descriptors such as

"sp.", "spp.", and numeric entries are excluded from this column.

See Also

https://www.algaebase.org/ for AlgaeBase website.

Examples

Example with a vector of scientific names
scientific_names <- c("Skeletonema marinoi”, "Cf. Azadinium perforatum”, "Gymnodinium sp.",
"Melosira varians”, "Aulacoseira islandica var. subarctica”)

Parse names
result <- parse_scientific_names(scientific_names)

Check the resulting data
print(result)

https://www.algaebase.org/

86 plot_map_leafiet

plot_map_leaflet Create an interactive Leaflet map of sampling stations

Description

Generates an interactive map using the leaflet package, plotting sampling stations from a data
frame. The function automatically detects column names for station, longitude, and latitude, sup-
porting both standard and delivery-style datasets.

Usage

plot_map_leaflet(data, provider = "CartoDB.Positron")

Arguments
data A data frame containing station coordinates and names. The function accepts
either:
¢ Standard format: station_name, sample_longitude_dd, sample_latitude_dd
* Delivery format: STATN, LONGI, LATIT
provider Character. The tile provider to use for the map background. See available
providers athttps://leaflet-extras.github.io/leaflet-providers/preview/.
Defaults to "CartoDB.Positron”.
Value

An HTML widget object (leaflet map) that can be printed or displayed in R Markdown or Shiny
applications.

Examples

Example data

df <- data.frame(
station_name = c("”Station A", "Station B"),
sample_longitude_dd = c(10.0, 10.5),
sample_latitude_dd = c(59.0, 59.5)

)

Plot points on map
map <- plot_map_leaflet(df)

Example data in SHARK delivery format
df_deliv <- data.frame(
STATN = c("Station A", "Station B"),
LONGI = c(10.9, 10.5),
LATIT = c(59.0, 59.5)

)

Plot points on map

https://leaflet-extras.github.io/leaflet-providers/preview/

positions_are_near_land 87

map_deliv <- plot_map_leaflet(df_deliv)

positions_are_near_land

Determine if positions are near land

Description

This function is a wrapper/re-export of iRfcb::ifcb_is_near_land(). The iRfcb package is
only required if you want to actually call this function.

Usage

positions_are_near_land(

latitude
longitud

S,
es,

distance = 500,

shape =
source =
crs = 43

NULL,

"Obis”,

26,

remove_small_islands = TRUE,
small_island_threshold = 2e+06,

plot = F
verbose

Arguments

latitudes
longitudes

distance

shape

source

crs

ALSE,

= TRUE

Numeric vector of latitudes for positions.
Numeric vector of longitudes for positions. Must be the same length as 1atitudes.

Buffer distance (in meters) from the coastline to consider "near land." Default is
500 meters.

Optional path to a shapefile (. shp) containing coastline data. If provided, this
file will be used instead of the default OBIS land vectors. A high-resolution
shapefile can improve the accuracy of buffer distance calculations. You can
retrieve a more detailed European coastline by setting the source argument to
"eea”. Downloaded shape files are cached across R sessions in a user-specific
cache directory.

Character string indicating which default coastline source to use when shape
= NULL. Options are "obis"” (Ocean Biodiversity Information System, default),
"ne" (Natural Earth 1:10 vectors) and "eea” (European Environment Agency).
Ignored if shape is provided.

Coordinate reference system (CRS) to use for input and output. Default is EPSG
code 4326 (WGS84).

88 positions_are_near._land

remove_small_islands
Logical indicating whether to remove small islands from the coastline. Useful
in archipelagos. Default is TRUE.

small_island_threshold
Area threshold in square meters below which islands will be considered small
and removed, if remove_small_islands is set to TRUE. Default is 2 square km.

plot A boolean indicating whether to plot the points, land polygon and buffer. Default
is FALSE.
verbose A logical indicating whether to print progress messages. Default is TRUE.
Details

Determines whether given positions are near land based on a land polygon shape file.

This function calculates a buffered area around the coastline using a polygon shapefile and deter-
mines if each input position intersects with this buffer or the landmass itself. By default, it uses the
OBIS land vector dataset.

The EEA shapefile is downloaded from https://www.eea.europa.eu/data-and-maps/data/
eea-coastline-for-analysis-2/gis-data/eea-coastline-polygon when source = "eea”.

Value

If plot = FALSE (default), a logical vector is returned indicating whether each position is near land
or not, with NA for positions where coordinates are missing. If plot = TRUE, a ggplot object is
returned showing the land polygon, buffer area, and position points colored by their proximity to
land.

See Also

clean_shark4r_cache() to manually clear cached shape files.

iRfcb: :ifcb_is_near_land for the original function.

Examples

Define coordinates
latitudes <- c(62.500353, 58.964498, 57.638725, 56.575338)
longitudes <- c(17.845993, 20.394418, 18.284523, 16.227174)

Call the function
near_land <- positions_are_near_land(latitudes, longitudes, distance = 300, crs = 4326)

Print the result
print(near_land)

https://www.eea.europa.eu/data-and-maps/data/eea-coastline-for-analysis-2/gis-data/eea-coastline-polygon
https://www.eea.europa.eu/data-and-maps/data/eea-coastline-for-analysis-2/gis-data/eea-coastline-polygon

read_ptbx 89

read_ptbx Read a Plankton Toolbox export file

Description

This function reads a sample file exported as an Excel (.xIsx) file from Plankton Toolbox and ex-
tracts data from a specified sheet. The default sheet is "sample_data.txt", which contains count

data.
Usage
read_ptbx(
file_path,
sheet = c("sample_data.txt”, "sample_info.txt"”, "counting_method.txt",
"Sample summary”, "README")
)
Arguments
file_path Character. Path to the Excel file.
sheet Character. The name of the sheet to read. Must be one of: "sample_data.txt",
"Sample summary", "sample_info.txt", "counting_method.txt", or "README".
Default is "sample_data.txt".
Value

A tibble containing the contents of the selected sheet.

See Also

https://nordicmicroalgae.org/plankton-toolbox/ for downloading Plankton Toolbox.

https://github.com/planktontoolbox/plankton-toolbox/ for Plankton Toolbox source code.

Examples

Read the default data sheet
sample_data <- read_ptbx(system.file("extdata/Anholt_E_2024-09-15_0-10m.x1sx",
package = "SHARK4R"))

Print output
sample_data

Read a specific sheet
sample_info <- read_ptbx(system.file("extdata/Anholt_E_2024-09-15_0-10m.x1sx",
package = "SHARK4R"),
sheet = "sample_info.txt")
Print output

https://nordicmicroalgae.org/plankton-toolbox/
https://github.com/planktontoolbox/plankton-toolbox/

90 read_shark

sample_info

read_shark Read SHARK export files (tab- or semicolon-delimited, plain text or
zipped)

Description

Reads tab- or semicolon-delimited SHARK export files with standardized format. The function can
handle plain text files (. txt) or zip archives (.zip) containing a file named shark_data. txt. It
automatically detects and converts column types and can optionally coerce the "value” column to
numeric. The "sample_date"” column is converted to Date if it exists.

Usage

read_shark(
filename,
delimiters = "point-tab”,
encoding = "utf_8",
guess_encoding = TRUE,
value_numeric = TRUE

)
Arguments

filename Path to the SHARK export file. Can be a .txt or .zip file. If a zip file is
provided, it should contain a file named shark_data. txt.

delimiters Character. Specifies the delimiter used in the file. Options: "point-tab” (tab-
separated, default) or "point-semi” (semicolon-separated).

encoding Character. File encoding. Options: "cp1252”, "utf_8", "utf_16", "latin_1".
Default is "utf_8". If guess_encoding = TRUE, detected encoding overrides
this value.

guess_encoding Logical. If TRUE (default), automatically detect file encoding. If FALSE, the
function uses only the user-specified encoding.

value_numeric Logical. If TRUE (default), attempts to convert the "value” column to numeric.
If FALSE, leaves "value" as-is.
Details

This function is robust to file encoding issues. By default (guess_encoding = TRUE), it attempts to
automatically detect the file encoding and will use it if it differs from the user-specified encoding.
Automatic detection can be disabled.

Value

A data frame containing the parsed contents of the SHARK export file, or NULL if the file is empty
or could not be read.

read_shark_deliv 91

See Also
read_shark_deliv() for reading SHARK Excel delivery files (.x1s/.x1sx).

Examples

Not run:
Read a plain text SHARK export
df_txt <- read_shark("sharkweb_data.txt")

Read a SHARK export from a zip archive
df_zip <- read_shark("shark_data.zip")

Read with explicit encoding and do not convert value
df_custom <- read_shark("shark_data.txt",
encoding = "latin_1",
guess_encoding = FALSE,
value_numeric = FALSE)

End(Not run)

read_shark_deliv Read SHARK Excel delivery files (.xls or .xlsx)

Description

Reads Excel files delivered to SHARK in a standardized format. The function automatically detects
whether the file is . x1s or .x1sx and reads the specified sheet, skipping a configurable number of
rows. Column types are automatically converted, and if a column "SDATE" exists, it is converted to
Date.

Usage

read_shark_deliv(filename, skip = 2, sheet = 2)

Arguments
filename Path to the Excel file to be read.
skip Minimum number of rows to skip before reading anything (column names or
data). Leading empty rows are automatically skipped, so this is a lower bound.
Ignored if sheet or range specifies a starting row. Default is 2.
sheet Sheet to read. Either a string (sheet name) or integer (sheet index). If neither is
specified, defaults to the second sheet.
Value

A data frame containing the parsed contents of the Excel file, or NULL if the file does not exist, is
empty, or cannot be read.

92 run_qc_app

See Also

read_shark() for reading SHARK tab- or semicolon-delimited export files or zip-archives.

Examples

Not run:
Read the second sheet of a .xlsx file (default)
df_x1sx <- read_shark_deliv("shark_delivery.xlsx")

Read the first sheet of a .xls file, skipping 3 rows
df_x1s <- read_shark_deliv("shark_delivery.x1s”, skip = 3, sheet = 1)

End(Not run)

run_qc_app Launch the SHARK4R Bio-QC Tool

Description

This function launches the interactive Shiny application for performing quality control (QC) on
SHARK data. The application provides a graphical interface for exploring and validating data
before or after submission to SHARK.

Usage

run_qc_app(interactive = TRUE)

Arguments

interactive Logical value whether the session is interactive or not.

Details

The function checks that all required packages for the app are installed before launching. If any are
missing, the user is notified. In interactive sessions, the function will prompt whether the missing
packages should be installed automatically. In non-interactive sessions (e.g. scripts or CI), the
function instead raises an error and lists the missing packages so they can be installed manually.

Value

This function is called for its side effect of launching a Shiny application. It does not return a value.

scatterplot

Examples

93

Launch the SHARK4R Bio-QC Tool
if(interactive()){

run_qc_app()
}

scatterplot

Scatterplot with optional horizontal threshold lines

Description

This function creates a scatterplot from a data frame, optionally coloring points by a grouping
column and adding horizontal threshold lines. Supports both static ggplot2 plots and interactive
plotly plots with a linear/log toggle.

Usage

scatterplot(
data,

x = c("station_name”, "sample_date"),
parameter = NULL,

hline = NULL,

hline_group_col = NULL,
hline_value_col = NULL,

hline_style =
max_hlines =
interactive =

list(linetype = "dashed”, size = 0.8),

5,

TRUE,

verbose = TRUE

Arguments

data

X

parameter

hline

hline_group_col

A data.frame or tibble containing at least the following columns: "station_name”,

"sample_date"”, "value”, "parameter”, "unit”.

Character. The column to use for the x-axis. Either "station_name" or "sample_date”.

Optional character. If provided, only data for this parameter will be plotted. If
NULL, the function will plot the first parameter found in the dataset.

Numeric or data.frame. Horizontal line(s) to add. If numeric, a single line
is drawn at that y-value. If a data.frame, must contain hline_group_col and
hline_value_col columns.

Character. Column used for grouping when hline is a data.frame and/or for
coloring points (optional).

94

hline_value_col

hline_style

max_hlines

interactive

verbose

Details

scatterplot

Character. Column in hline used for the y-values of horizontal lines.

List. Appearance settings for horizontal lines. Should contain linetype and
size.

Integer. Maximum number of horizontal line groups to display per parameter
when hline is a data.frame.

Logical. If TRUE, returns an interactive plotly plot; if FALSE, returns a static
ggplot2 plot.

Logical. If TRUE, messages will be displayed during execution. Defaults to
TRUE.

* If hline is numeric, a single horizontal line is drawn across the plot.

played.

If hline is a data.frame, only the first max_hlines groups (sorted alphabetically) are dis-

* Points can be colored by hline_group_col if provided.

* Interactive plots include buttons to switch between linear and log y-axis scales.

Value

A ggplot object (if interactive = FALSE) or a plotly object (if interactive = TRUE).

See Also

load_shark4r_stats for loading threshold or summary statistics that can be used to define hori-
zontal lines in the plot.

Examples

Not run:
scatterplot(

data = my_data,

x = "station_name”,
parameter = "Chlorophyll-a”,
hline = c(10, 20)

)
scatterplot(
data = my_data,
x = "sample_date”,
parameter = "Bacterial abundance”,
hline = thresholds_df,
hline_group_col = "location_sea_basin",

hline_value_col = "P99"

)

End(Not run)

translate_shark_datatype 95

translate_shark_datatype
Translate SHARK4R datatype names

Description

Converts user-facing datatype names (e.g., "Grey seal") to internal SHARK4R names (e.g., "Grey-

Seal") based on SHARK4R: : : . type_lookup. See available user-facing datatypes in get_shark_options()$dataTypes.
Usage

translate_shark_datatype(x)

Arguments

X Character vector of datatype names to translate

Value

Character vector of translated datatype names

Examples

Example strings
datatypes <- c("Grey seal”, "Primary production”, "Physical and Chemical”)

Basic translation
translate_shark_datatype(datatypes)

update_dyntaxa_taxonomy
Update SHARK taxonomy records using Dyntaxa

Description

This function updates Dyntaxa taxonomy records based on a list of Dyntaxa taxon IDs. It collects
parent IDs from SLU Artdatabanken API (Dyntaxa), retrieves full taxonomy records, and organizes
the data into a full taxonomic table that can be joined with data downloaded from SHARK

Usage

update_dyntaxa_taxonomy (
dyntaxa_ids,
subscription_key = Sys.getenv("DYNTAXA_KEY"),
add_missing_taxa = FALSE,
verbose = TRUE

https://shark.smhi.se/en/

96 update_dyntaxa_taxonomy

Arguments

dyntaxa_ids A vector of Dyntaxa taxon IDs to update.
subscription_key

A Dyntaxa API subscription key. By default, the key is read from the environ-
ment variable DYNTAXA_KEY.

You can provide the key in three ways:
* Directly as a parameter: update_dyntaxa_taxonomy (238366, subscription_key
= "your_key_here").

¢ Temporarily for the session: Sys.setenv(DYNTAXA_KEY = "your_key_here").
After this, you do not need to pass subscription_key to the function.

* Permanently across sessions by adding it to your ~/.Renviron file. Use
usethis::edit_r_environ() to open the file, then add: DYNTAXA_KEY=your_key_here.
After this, you do not need to pass subscription_key to the function.

add_missing_taxa

Logical. If TRUE, the function will attempt to fetch missing taxa (i.e., taxon_ids
not found in the initial Dyntaxa DwC-A query). Default is FALSE.

verbose Logical. Print progress messages. Default is TRUE.

Details

A valid Dyntaxa API subscription key is required. You can request a free key for the "Taxonomy"
service from the ArtDatabanken API portal: https://api-portal.artdatabanken.se/

Note: Please review the API conditions and register for access before using the API. Data collected
through the API is stored at SLU Artdatabanken. Please also note that the authors of SHARK4R are
not affiliated with SLU Artdatabanken.

Value

A tibble representing the updated Dyntaxa taxonomy table.

See Also

get_shark_data, update_worms_taxonomy, SLU Artdatabanken API Documentation

Examples

Not run:

Update Dyntaxa taxonomy for taxon IDs 238366 and 1010380

updated_taxonomy <- update_dyntaxa_taxonomy(c(238366, 1010380), "your_subscription_key")
print(updated_taxonomy)

End(Not run)

https://api-portal.artdatabanken.se/
https://www.slu.se/artdatabanken/rapportering-och-fynd/oppna-data-och-apier/
https://api-portal.artdatabanken.se/
https://api-portal.artdatabanken.se/

which_basin 97

which_basin Determine if points are in a specified sea basin

Description

This function is a wrapper/re-export of iRfcb::ifcb_which_basin(). The iRfcb package is
only required if you want to actually call this function.

Usage

which_basin(latitudes, longitudes, plot = FALSE, shape_file = NULL)

Arguments
latitudes A numeric vector of latitude points.
longitudes A numeric vector of longitude points.
plot A boolean indicating whether to plot the points along with the sea basins. De-
fault is FALSE.
shape_file The absolute path to a custom polygon shapefile in WGS84 (EPSG:4326) that
represents the sea basin. Defaults to the Baltic Sea, Kattegat, and Skagerrak
basins included in the iRfcb package.
Details

This function identifies which sub-basin a set of latitude and longitude points belong to, using a
user-specified or default shapefile. The default shapefile includes the Baltic Sea, Kattegat, and
Skagerrak basins and is included in the iRfcb package.

This function reads a pre-packaged shapefile of the Baltic Sea, Kattegat, and Skagerrak basins from
the iRfcb package by default, or a user-supplied shapefile if provided. The shapefiles originate from
SHARK (https://shark.smhi.se/en/). It sets the CRS, transforms the CRS to WGS84 (EPSG:4326)
if necessary, and checks if the given points fall within the specified sea basin. Optionally, it plots
the points and the sea basin polygons together.

Value

A vector indicating the basin each point belongs to, or a ggplot object if plot = TRUE.

See Also

iRfcb: :ifcb_which_basin for the original function.

98

Examples

Define example latitude and longitude vectors
latitudes <- c(55.337, 54.729, 56.311, 57.975)
longitudes <- c(12.674, 14.643, 12.237, 10.637)

Check in which Baltic sea basin the points are in
points_in_the_baltic <- which_basin(latitudes, longitudes)
print(points_in_the_baltic)

Plot the points and the basins
map <- which_basin(latitudes, longitudes, plot = TRUE)

which_basin

Index

add_worms_taxonomy, 3, 67
assign_phytoplankton_group, 5

check_codes, 7
check_datatype, 8
check_depth, 9, 73
check_fields, 12, 70
check_logical_parameter, 14
check_nominal_station, 16
check_onland, 11,17, 73
check_outliers, 18, 71
check_parameter_rules, 21
check_setup, 23
check_station_distance, 24
check_value_logical, 26
check_zero_positions, 27
check_zero_value, 28
clean_shark4r_cache, 29, 37

clean_shark4r_cache(), 8, 37,43, 48, 49, 88

construct_dyntaxa_table, 30, 67
convert_ddmm_to_dd, 32

find_required_fields, 13, 33

get_delivery_template, 13, 34
get_dyntaxa_dwca, 36
get_dyntaxa_dwca(), 29
get_dyntaxa_parent_ids, 37
get_dyntaxa_records, 39
get_hab_list, 40
get_nomp_list, 42
get_nomp_list(), 29
get_nua_external_links, 44
get_nua_harmfulness, 45
get_nua_media_links, 46
get_nua_taxa, 47
get_peg_list, 48
get_peg_list(), 29
get_shark_codes, 49
get_shark_codes(), 8, 29

get_shark_data, 50, 62, 96
get_shark_data(), 55, 57
get_shark_datasets, 54
get_shark_datasets(), 54
get_shark_options, 50, 56, 59, 62
get_shark_options(), 54, 55
get_shark_statistics, 57,71
get_shark_statistics(), 20, 29
get_shark_table_counts, 59
get_shark_table_counts(), 54
get_toxin_list, 62
get_worms_classification, 63
get_worms_records, 64
get_worms_taxonomy_tree, 32, 66

iRfcb::ifcb_is_near_land, 88
iRfcb::ifcb_which_basin, 97
is_in_dyntaxa, 68

load_shark4r_fields, 12, 13, 69
load_shark4r_stats, 70,71, 94
lookup_xy, 11,72
lookup_xy(), 10

match_algaebase_genus, 73
match_algaebase_species, 75
match_algaebase_taxa, 77
match_dyntaxa_taxa, 79
match_station, 81
match_worms_taxa, 82

parse_scientific_names, 79, 84
plot_map_leaflet, 86
positions_are_near_land, 87

read_ptbx, 89
read_shark, 90
read_shark(), 92
read_shark_deliv, 91
read_shark_deliv(), 91
run_qc_app, 92

100

scatterplot, 71, 93

terra: :SpatRaster, 9, 10
translate_shark_datatype, 95

update_dyntaxa_taxonomy, 95
update_worms_taxonomy, 96

which_basin, 97
wm_children, 67
wm_classification, 64, 67
wm_synonyms, 67

INDEX

	add_worms_taxonomy
	assign_phytoplankton_group
	check_codes
	check_datatype
	check_depth
	check_fields
	check_logical_parameter
	check_nominal_station
	check_onland
	check_outliers
	check_parameter_rules
	check_setup
	check_station_distance
	check_value_logical
	check_zero_positions
	check_zero_value
	clean_shark4r_cache
	construct_dyntaxa_table
	convert_ddmm_to_dd
	find_required_fields
	get_delivery_template
	get_dyntaxa_dwca
	get_dyntaxa_parent_ids
	get_dyntaxa_records
	get_hab_list
	get_nomp_list
	get_nua_external_links
	get_nua_harmfulness
	get_nua_media_links
	get_nua_taxa
	get_peg_list
	get_shark_codes
	get_shark_data
	get_shark_datasets
	get_shark_options
	get_shark_statistics
	get_shark_table_counts
	get_toxin_list
	get_worms_classification
	get_worms_records
	get_worms_taxonomy_tree
	is_in_dyntaxa
	load_shark4r_fields
	load_shark4r_stats
	lookup_xy
	match_algaebase_genus
	match_algaebase_species
	match_algaebase_taxa
	match_dyntaxa_taxa
	match_station
	match_worms_taxa
	parse_scientific_names
	plot_map_leaflet
	positions_are_near_land
	read_ptbx
	read_shark
	read_shark_deliv
	run_qc_app
	scatterplot
	translate_shark_datatype
	update_dyntaxa_taxonomy
	which_basin
	Index

