
Package ‘edgemodelr’
February 7, 2026

Type Package

Title Local Large Language Model Inference Engine

Version 0.1.6

Description Enables R users to run large language models locally using 'GGUF' model files
and the 'llama.cpp' inference engine. Provides a complete R interface for loading models,
generating text completions, and streaming responses in real-time. Supports local
inference without requiring cloud APIs or internet connectivity, ensuring complete
data privacy and control. Based on the 'llama.cpp' project by Georgi Gerganov (2023) <https:
//github.com/ggml-org/llama.cpp>.

License MIT + file LICENSE

URL https://github.com/PawanRamaMali/edgemodelr

BugReports https://github.com/PawanRamaMali/edgemodelr/issues

Encoding UTF-8

Depends R (>= 4.0)

LinkingTo Rcpp

Imports Rcpp (>= 1.0.0), utils, tools

Suggests testthat (>= 3.0.0), knitr, rmarkdown, curl, shiny

SystemRequirements GNU make or equivalent for building

Note Package includes self-contained 'llama.cpp' implementation
(~56MB) for complete functionality without external
dependencies.

Config/testthat/edition 3

RoxygenNote 7.3.3

NeedsCompilation yes

Author Pawan Rama Mali [aut, cre, cph],
Georgi Gerganov [aut, cph] (Author of llama.cpp and GGML library),
The ggml authors [cph] (llama.cpp and GGML contributors),
Jeffrey Quesnelle [ctb, cph] (YaRN RoPE implementation),
Bowen Peng [ctb, cph] (YaRN RoPE implementation),
pi6am [ctb] (DRY sampler from Koboldcpp),

1

https://github.com/ggml-org/llama.cpp
https://github.com/ggml-org/llama.cpp
https://github.com/PawanRamaMali/edgemodelr
https://github.com/PawanRamaMali/edgemodelr/issues

2 build_chat_prompt

Ivan Yurchenko [ctb] (Z-algorithm implementation),
Dirk Eddelbuettel [ctb, rev]

Maintainer Pawan Rama Mali <prm@outlook.in>

Repository CRAN

Date/Publication 2026-02-07 06:10:49 UTC

Contents
build_chat_prompt . 2
edge_benchmark . 3
edge_chat_stream . 4
edge_clean_cache . 5
edge_completion . 6
edge_download_model . 7
edge_download_url . 8
edge_find_gguf_models . 9
edge_find_ollama_models . 10
edge_free_model . 11
edge_list_models . 12
edge_load_model . 12
edge_load_ollama_model . 13
edge_quick_setup . 14
edge_set_verbose . 15
edge_small_model_config . 15
edge_stream_completion . 16
is_valid_model . 17
test_ollama_model_compatibility . 18

Index 20

build_chat_prompt Build chat prompt from conversation history

Description

Build chat prompt from conversation history

Usage

build_chat_prompt(history)

Arguments

history List of conversation turns with role and content

edge_benchmark 3

Value

Formatted prompt string

edge_benchmark Performance benchmarking for model inference

Description

Test inference speed and throughput with the current model to measure the effectiveness of opti-
mizations.

Usage

edge_benchmark(
ctx,
prompt = "The quick brown fox",
n_predict = 50,
iterations = 3

)

Arguments

ctx Model context from edge_load_model()

prompt Test prompt to use for benchmarking (default: standard test)

n_predict Number of tokens to generate for the test

iterations Number of test iterations to average results

Value

List with performance metrics

Examples

Not run:
setup <- edge_quick_setup("TinyLlama-1.1B")
if (!is.null(setup$context)) {

ctx <- setup$context
perf <- edge_benchmark(ctx)
print(perf)
edge_free_model(ctx)

}

End(Not run)

4 edge_chat_stream

edge_chat_stream Interactive chat session with streaming responses

Description

Interactive chat session with streaming responses

Usage

edge_chat_stream(ctx, system_prompt = NULL, max_history = 10, n_predict = 200L,
temperature = 0.8, verbose = TRUE)

Arguments

ctx Model context from edge_load_model()

system_prompt Optional system prompt to set context

max_history Maximum conversation turns to keep in context (default: 10)

n_predict Maximum tokens per response (default: 200)

temperature Sampling temperature (default: 0.8)

verbose Whether to print responses to console (default: TRUE)

Value

NULL (runs interactively)

Examples

Not run:
Requires a downloaded model (not run in checks)
setup <- edge_quick_setup("TinyLlama-1.1B")
ctx <- setup$context

if (!is.null(ctx)) {
Start interactive chat with streaming
edge_chat_stream(ctx,

system_prompt = "You are a helpful R programming assistant.")

edge_free_model(ctx)
}

End(Not run)

edge_clean_cache 5

edge_clean_cache Clean up cache directory and manage storage

Description

Remove outdated model files from the cache directory to comply with CRAN policies about actively
managing cached content and keeping sizes small.

Usage

edge_clean_cache(
cache_dir = NULL,
max_age_days = 30,
max_size_mb = 500,
interactive = TRUE,
verbose = TRUE

)

Arguments

cache_dir Cache directory path (default: user cache directory)

max_age_days Maximum age of files to keep in days (default: 30)

max_size_mb Maximum total cache size in MB (default: 500)

interactive Whether to ask for user confirmation before deletion

verbose Whether to print status messages (default: TRUE)

Value

Invisible list of deleted files

Examples

Not run:
Clean cache files older than 30 days
edge_clean_cache()

Clean cache with custom settings
edge_clean_cache(max_age_days = 7, max_size_mb = 100)

End(Not run)

6 edge_completion

edge_completion Generate text completion using loaded model

Description

Generate text completion using loaded model

Usage

edge_completion(ctx, prompt, n_predict = 128L, temperature = 0.8, top_p = 0.95)

Arguments

ctx Model context from edge_load_model()

prompt Input text prompt

n_predict Maximum tokens to generate (default: 128)

temperature Sampling temperature (default: 0.8)

top_p Top-p sampling parameter (default: 0.95)

Value

Generated text as character string

Examples

Not run:
Requires a downloaded model (not run in checks)
model_path <- "model.gguf"
if (file.exists(model_path)) {

ctx <- edge_load_model(model_path)
result <- edge_completion(ctx, "The capital of France is", n_predict = 50)
cat(result)
edge_free_model(ctx)

}

End(Not run)

edge_download_model 7

edge_download_model Download a GGUF model from Hugging Face

Description

Download a GGUF model from Hugging Face

Usage

edge_download_model(model_id, filename, cache_dir = NULL,
force_download = FALSE, verbose = TRUE)

Arguments

model_id Hugging Face model identifier (e.g., "TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF")

filename Specific GGUF file to download

cache_dir Directory to store downloaded models (default: "~/.cache/edgemodelr")

force_download Force re-download even if file exists

verbose Whether to print download progress messages

Value

Path to the downloaded model file

Examples

Not run:
Download TinyLlama model (large file, not run in checks)
model_path <- edge_download_model(

model_id = "TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF",
filename = "tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf"

)

Use the downloaded model
if (file.exists(model_path)) {

ctx <- edge_load_model(model_path)
response <- edge_completion(ctx, "Hello, how are you?")
edge_free_model(ctx)

}

End(Not run)

8 edge_download_url

edge_download_url Download a model from a direct URL

Description

Downloads a GGUF model file from any URL. Supports resume and validates GGUF format. This
function is useful for downloading models from GPT4All CDN or other direct sources that don’t
require authentication.

Usage

edge_download_url(url, filename, cache_dir = NULL,
force_download = FALSE, verbose = TRUE)

Arguments

url Direct download URL for the model

filename Local filename to save as

cache_dir Directory to store downloaded models (default: user cache directory)

force_download Force re-download even if file exists

verbose Whether to print progress messages

Value

Path to the downloaded model file

Examples

Not run:
Download from GPT4All CDN (large file, not run in checks)
model_path <- edge_download_url(

url = "https://gpt4all.io/models/gguf/mistral-7b-instruct-v0.1.Q4_0.gguf",
filename = "mistral-7b.gguf"

)

End(Not run)

edge_find_gguf_models 9

edge_find_gguf_models Find and prepare GGUF models for use with edgemodelr

Description

This function finds compatible GGUF model files from various sources including Ollama installa-
tions, custom directories, or any folder containing GGUF files. It tests each model for compatibility
with edgemodelr and creates organized copies or links for easy access.

Usage

edge_find_gguf_models(
source_dirs = NULL,
target_dir = NULL,
create_links = TRUE,
model_pattern = NULL,
test_compatibility = TRUE,
min_size_mb = 50,
verbose = TRUE

)

Arguments

source_dirs Vector of directories to search for GGUF files. If NULL, automatically searches
common locations including Ollama installation.

target_dir Directory where to create links/copies of compatible models. If NULL, creates
a "local_models" directory in the current working directory.

create_links Logical. If TRUE (default), creates symbolic links to save disk space. If FALSE,
copies the files (uses more disk space but more compatible).

model_pattern Optional pattern to filter model files by name.
test_compatibility

Logical. If TRUE (default), tests each GGUF file for compatibility with edge-
modelr before including it.

min_size_mb Minimum file size in MB to consider (default: 50MB). Helps filter out config
files and focus on actual models.

verbose Logical. Whether to print detailed progress information.

Details

This function performs the following steps:

1. Searches specified directories (or auto-detects common locations)

2. Identifies GGUF format files above the minimum size threshold

3. Optionally tests each file for compatibility with edgemodelr

4. Creates organized symbolic links or copies in the target directory

10 edge_find_ollama_models

5. Returns detailed information about working models

The function automatically searches these locations if no source_dirs specified:

• Ollama models directory (~/.ollama/models or %USERPROFILE%/.ollama/models)

• Current working directory

• ~/models directory (if exists)

• Common model storage locations

Value

List containing information about compatible models, including paths and metadata

Examples

Not run:
Basic usage - auto-detect and test all GGUF models
models_info <- edge_find_gguf_models()
if (!is.null(models_info) && length(models_info$models) > 0) {

Load the first compatible model
ctx <- edge_load_model(models_info$models[[1]]$path)
result <- edge_completion(ctx, "Hello", n_predict = 20)
edge_free_model(ctx)

}

Search specific directories
models_info <- edge_find_gguf_models(source_dirs = c("~/Downloads", "~/models"))

Skip compatibility testing (faster but less reliable)
models_info <- edge_find_gguf_models(test_compatibility = FALSE)

Copy files instead of creating links
models_info <- edge_find_gguf_models(create_links = FALSE)

Filter for specific models
models_info <- edge_find_gguf_models(model_pattern = "llama")

End(Not run)

edge_find_ollama_models

Find and load Ollama models

Description

Utility functions to discover and work with locally stored Ollama models. Ollama stores models as
SHA-256 named blobs which are GGUF files that can be used directly with edgemodelr.

edge_free_model 11

Usage

edge_find_ollama_models(
ollama_dir = NULL,
test_compatibility = FALSE,
max_size_gb = 10

)

Arguments

ollama_dir Optional path to Ollama models directory. If NULL, will auto-detect.
test_compatibility

If TRUE, test if each model can be loaded successfully

max_size_gb Maximum model size in GB to consider (default: 10)

Value

List with ollama_path and discovered models information

Examples

Not run:
Find Ollama models
ollama_info <- edge_find_ollama_models()

if (!is.null(ollama_info) && length(ollama_info$models) > 0) {
Use first compatible model
model_path <- ollama_info$models[[1]]$path
ctx <- edge_load_model(model_path)
result <- edge_completion(ctx, "Hello", n_predict = 10)
edge_free_model(ctx)

}

End(Not run)

edge_free_model Free model context and release memory

Description

Free model context and release memory

Usage

edge_free_model(ctx)

Arguments

ctx Model context from edge_load_model()

12 edge_load_model

Value

NULL (invisibly)

Examples

Not run:
Requires a downloaded model (not run in checks)
model_path <- "model.gguf"
if (file.exists(model_path)) {

ctx <- edge_load_model(model_path)
... use model ...
edge_free_model(ctx) # Clean up

}

End(Not run)

edge_list_models List popular pre-configured models

Description

List popular pre-configured models

Usage

edge_list_models()

Value

Data frame with model information

edge_load_model Load a local GGUF model for inference

Description

Load a local GGUF model for inference

Usage

edge_load_model(model_path, n_ctx = 2048L, n_gpu_layers = 0L)

Arguments

model_path Path to a .gguf model file

n_ctx Maximum context length (default: 2048)

n_gpu_layers Number of layers to offload to GPU (default: 0, CPU-only)

edge_load_ollama_model 13

Value

External pointer to the loaded model context

Examples

Not run:
Load a TinyLlama model (requires model file)
model_path <- "~/models/TinyLlama-1.1B-Chat.Q4_K_M.gguf"
if (file.exists(model_path)) {

ctx <- edge_load_model(model_path, n_ctx = 2048)

Generate completion
result <- edge_completion(ctx, "Explain R data.frame:", n_predict = 100)
cat(result)

Free model when done
edge_free_model(ctx)

}

End(Not run)

edge_load_ollama_model

Load an Ollama model by partial SHA-256 hash

Description

Find and load an Ollama model using a partial SHA-256 hash instead of the full path. This is more
convenient than typing out the full blob path.

Usage

edge_load_ollama_model(partial_hash, n_ctx = 2048L, n_gpu_layers = 0L)

Arguments

partial_hash First few characters of the SHA-256 hash

n_ctx Maximum context length (default: 2048)

n_gpu_layers Number of layers to offload to GPU (default: 0)

Value

Model context if successful, throws error if not found or incompatible

14 edge_quick_setup

Examples

Not run:
Load model using first 8 characters of SHA hash
ctx <- edge_load_ollama_model("b112e727")
result <- edge_completion(ctx, "Hello", n_predict = 10)
edge_free_model(ctx)

End(Not run)

edge_quick_setup Quick setup for a popular model

Description

Quick setup for a popular model

Usage

edge_quick_setup(model_name, cache_dir = NULL, verbose = TRUE)

Arguments

model_name Name of the model from edge_list_models()

cache_dir Directory to store downloaded models

verbose Whether to print setup progress messages

Value

List with model path and context (if llama.cpp is available)

Examples

Not run:
Quick setup with TinyLlama (downloads model, not run in checks)
setup <- edge_quick_setup("TinyLlama-1.1B")
ctx <- setup$context

if (!is.null(ctx)) {
response <- edge_completion(ctx, "Hello!")
cat("Response:", response, "\n")
edge_free_model(ctx)

}

End(Not run)

edge_set_verbose 15

edge_set_verbose Control llama.cpp logging verbosity

Description

Enable or disable verbose output from the underlying llama.cpp library. By default, all output
except errors is suppressed to comply with CRAN policies.

Usage

edge_set_verbose(enabled = FALSE)

Arguments

enabled Logical. If TRUE, enables verbose llama.cpp output. If FALSE (default), sup-
presses all output except errors.

Value

Invisible NULL

Examples

Enable verbose output (not recommended for normal use)
edge_set_verbose(TRUE)

Disable verbose output (default, recommended)
edge_set_verbose(FALSE)

edge_small_model_config

Get optimized configuration for small language models

Description

Returns recommended parameters for loading and using small models (1B-3B parameters) to max-
imize inference speed on resource-constrained devices.

Usage

edge_small_model_config(
model_size_mb = NULL,
available_ram_gb = NULL,
target = "laptop"

)

16 edge_stream_completion

Arguments

model_size_mb Model file size in MB (if known). If NULL, uses conservative defaults.
available_ram_gb

Available system RAM in GB. If NULL, uses conservative defaults.

target Device target: "mobile", "laptop", "desktop", or "server" (default: "laptop")

Value

List with optimized parameters for edge_load_model() and edge_completion()

Examples

Get optimized config for a 700MB model on a laptop
config <- edge_small_model_config(model_size_mb = 700, available_ram_gb = 8)

Use the config to load a model
Not run:
model_path <- "path/to/tinyllama.gguf"
if (file.exists(model_path)) {

ctx <- edge_load_model(
model_path,
n_ctx = config$n_ctx,
n_gpu_layers = config$n_gpu_layers

)

result <- edge_completion(
ctx,
prompt = "Hello",
n_predict = config$recommended_n_predict,
temperature = config$recommended_temperature

)

edge_free_model(ctx)
}

End(Not run)

edge_stream_completion

Stream text completion with real-time token generation

Description

Stream text completion with real-time token generation

Usage

edge_stream_completion(ctx, prompt, callback, n_predict = 128L, temperature = 0.8,
top_p = 0.95)

is_valid_model 17

Arguments

ctx Model context from edge_load_model()

prompt Input text prompt

callback Function called for each generated token. Receives list with token info.

n_predict Maximum tokens to generate (default: 128)

temperature Sampling temperature (default: 0.8)

top_p Top-p sampling parameter (default: 0.95)

Value

List with full response and generation statistics

Examples

Not run:
Requires a downloaded model (not run in checks)
model_path <- "model.gguf"
if (file.exists(model_path)) {

ctx <- edge_load_model(model_path)

Basic streaming with token display
result <- edge_stream_completion(ctx, "Hello, how are you?",

callback = function(data) {
if (!data$is_final) {

cat(data$token)
flush.console()

} else {
cat("\n[Done: ", data$total_tokens, " tokens]\n")

}
return(TRUE) # Continue generation

})

edge_free_model(ctx)
}

End(Not run)

is_valid_model Check if model context is valid

Description

Check if model context is valid

Usage

is_valid_model(ctx)

18 test_ollama_model_compatibility

Arguments

ctx Model context to check

Value

Logical indicating if context is valid

test_ollama_model_compatibility

Test if an Ollama model blob can be used with edgemodelr

Description

This function tries to load an Ollama GGUF blob with edgemodelr using a minimal configuration
and then runs a very short completion. It is intended to quickly detect common incompatibilities
(unsupported architectures, invalid or unsupported GGUF files, or models that cannot run inference)
before you attempt to use the model in a longer session.

Usage

test_ollama_model_compatibility(model_path, verbose = FALSE)

Arguments

model_path Path to the Ollama blob file (a GGUF file, typically named by its SHA-256 hash
inside the Ollama models/blobs directory).

verbose If TRUE, print human-readable diagnostics for models that fail the compatibility
checks.

Details

A model is considered compatible if:

• edge_load_model() succeeds with a small context size (n_ctx = 256) and CPU-only execu-
tion (n_gpu_layers = 0),

• the resulting model context passes is_valid_model(),

• and a minimal call to edge_completion() (1 token) returns without error.

When verbose = TRUE, this function classifies common failure modes: unsupported model architec-
ture, invalid GGUF file, unsupported GGUF version, or a generic error (first 80 characters reported
with truncation indicator).

Value

Logical: TRUE if the model loads and can run a short completion successfully, FALSE otherwise.

test_ollama_model_compatibility 19

Examples

Not run:
Test an individual Ollama blob
is_ok <- test_ollama_model_compatibility("/path/to/blob", verbose = TRUE)
#
This function is also used internally by edge_find_ollama_models()
when test_compatibility = TRUE.

End(Not run)

Index

build_chat_prompt, 2

edge_benchmark, 3
edge_chat_stream, 4
edge_clean_cache, 5
edge_completion, 6
edge_download_model, 7
edge_download_url, 8
edge_find_gguf_models, 9
edge_find_ollama_models, 10
edge_free_model, 11
edge_list_models, 12
edge_load_model, 12
edge_load_ollama_model, 13
edge_quick_setup, 14
edge_set_verbose, 15
edge_small_model_config, 15
edge_stream_completion, 16

is_valid_model, 17

test_ollama_model_compatibility, 18

20

	build_chat_prompt
	edge_benchmark
	edge_chat_stream
	edge_clean_cache
	edge_completion
	edge_download_model
	edge_download_url
	edge_find_gguf_models
	edge_find_ollama_models
	edge_free_model
	edge_list_models
	edge_load_model
	edge_load_ollama_model
	edge_quick_setup
	edge_set_verbose
	edge_small_model_config
	edge_stream_completion
	is_valid_model
	test_ollama_model_compatibility
	Index

