Package 'scStability'

June 20, 2025

Title Measuring the Stability of Dimension Reduction and Cluster Assignment in scRNA-Seq Experiments

Version 1.0.2

Description Provides functions for evaluating the stability of low-dimensional embeddings and cluster assignments in single-cell RNA sequencing (scRNA-seq) datasets. Starting from a principal component analysis (PCA) object, users can generate multiple replicates of t-Distributed Stochastic Neighbor Embedding (t-SNE) or Uniform Manifold Approximation and Projection (UMAP) embeddings. Embedding stability is quantified by computing pairwise Kendall's Tau correlations across replicates and summarizing the distribution of correlation coefficients. In addition to dimensionality reduction, 'scStability' assesses clustering consistency using either Louvain or Leiden algorithms and calculating the Normalized Mutual Information (NMI) between all pairs of cluster assignments. For background on UMAP and t-SNE algorithms, see McInnes et al. (2020, <doi:10.21105/joss.00861>) and van der Maaten & Hinton (2008, https://lvdmaaten.github.io/tsne/), respectively.

License MIT + file LICENSE

Language en-US Encoding UTF-8

RoxygenNote 7.3.2

Imports aricode, future, future.apply, ggplot2, magrittr, pcaPP, rlang, Rtsne, Seurat, stats, uwot, vegan

Suggests spelling, knitr, rmarkdown, scRNAseq, SummarizedExperiment, BiocManager, testthat (>= 3.0.0)

biocViews SingleCell, RNASeq

Config/testthat/edition 3

VignetteBuilder knitr

NeedsCompilation no

Author Ben Abrahams [aut, cre]

Maintainer Ben Abrahams <ben.abrahams.de@gmail.com>

Repository CRAN

Date/Publication 2025-06-20 16:40:09 UTC

2 clustStable

Contents

	clustStable																																2
	compareEmb .																																3
	createEmb																																4
	scStability																			•													5
Index																																	7
clust	Stable		Cr	ea	te	an	d	co.	mį	oai	re i	ті	ılt	ipl	e c	clu	st	eri	inį	3 r	un	s	on	S	cR	?N	4-8	seç	q a	lat	а		

Description

Generate multiple clustering iterations on a Seurat object containing scRNA-seq data using the provided dimensionality reduction. The function creates a shared nearest neighbor (SNN) graph and assigns clusters using the specified algorithm, then calculates stability metrics across iterations.

Usage

```
clustStable(
  n_runs,
  seurat_obj,
  method = c("louvain", "leiden"),
  resolution = 0.8,
  dims = 1:10,
  n_cores = 1,
  verbose = TRUE,
  print_plot = TRUE,
  seeds = NULL
)
```

Arguments

n_runs	Integer specifying the number of cluster assignments to generate (default: 100)
seurat_obj	A Seurat object containing scRNA-seq data with a PCA reduction
method	Character string specifying the clustering algorithm to use: either "louvain" or "leiden"
resolution	Numeric value specifying the clustering resolution parameter (default: 0.8)
dims	Integer vector specifying which PCA dimensions to use (default: 1:10)
n_cores	Integer specifying the number of CPU cores to use for parallelization (default: 1)
verbose	Whether the function should print summary statistics as it calculates them
print_plot	Whether the final violin plot should be automatically printed
seeds	A set of seeds of length n_runs for creating clusters

compareEmb 3

Value

A list containing the following components:

per_index_means

Numeric vector of NMI values for each clustering iteration

ci Numeric vector containing the lower and upper bounds of the 95% confidence

interval

cluster_labels List of cluster assignments for each iteration

compareEmb Compare dimensional reduction embeddings and calculate stability statistics

Description

Evaluates the stability of a set of dimension reduction embeddings by performing pairwise Procrustes alignment and calculating Kendall's Tau correlation between each pair. This function quantifies the consistency of embeddings generated with the same algorithm but different random initializations.

Usage

```
compareEmb(emb_list, n_cores = 1, verbose = TRUE, print_plot = TRUE)
```

Arguments

emb_list	A list of 2D embeddings (each typically containing coordinates for UMAP or t-SNE) created by the createEmb function
n_cores	Integer specifying the number of CPU cores to use for parallelization (default: 1)
verbose	Whether the function should print summary statistics as it calculates them

print_plot Whether the final violin plot should be automatically printed

Value

A list containing the following components:

mean Numeric value representing the overall mean correlation across all pairwise comparisons

mean_per_embedding

Numeric vector of mean correlation values for each embedding

all_pairwise_correlations

Numeric vector containing all pairwise correlation values

range Numeric vector with minimum and maximum of mean correlation per embed-

ding

ci Numeric vector containing the lower and upper bounds of the 95% confidence

interval

4 createEmb

Create multiple dimension reduction embeddings

Description

Generates multiple dimension reduction embeddings using either UMAP or t-SNE algorithms. Each embedding is created with different random initializations to assess stability. The function returns a list of embeddings, each represented as a data frame or matrix.

Usage

```
createEmb(
  dr_input,
  n_runs = 100,
  method = c("umap", "tsne"),
  n_neighbors = 15,
  min_dist = 0.1,
  perplexity = 30,
  theta = 0.5,
  n_cores = 1,
  seeds = NULL
)
```

Arguments

dr_input	A numeric matrix or data frame containing the input data for dimension reduction, with rows representing observations (cells) and columns representing PCA components
n_runs	Integer specifying the number of embeddings to generate (default: 100)
method	Character string specifying the dimension reduction method to use: either "umap" or "tsne"
n_neighbors	Integer specifying the number of neighbors to consider when constructing the initial graph (used for UMAP only, default: 30)
min_dist	Numeric value specifying the minimum distance between points in the embedding (used for UMAP only, default: 0.1)
perplexity	Numeric value controlling the effective number of neighbors (used for t-SNE only, default: 30)
theta	Numeric value between 0 and 1 controlling the speed/accuracy trade-off (used for t-SNE only, default: 0.5)
n_cores	Integer specifying the number of CPU cores to use for parallelization (default: 1)
seeds	A set of seeds of length n_runs to be used for each embedding

scStability 5

Value

A list of dimension reduction embeddings, each represented as a data frame with rows corresponding to observations (cells) and two columns representing the x and y coordinates in the reduced space.

scStability	A user friendly wrapper function that runs the entire scRNA-seq stability workflow and shows statistics for each step
	· · · · · · · · · · · · · · · · · · ·

Description

A wrapper function that runs all other stability analysis functions in order. Statistics for each step are printed accordingly and a final DR and cluster plot is shown which represents the medoid embeddings and cluster assignments that were generated.

Usage

```
scStability(
   seurat_obj,
   n_runs = 100,
   dr_method = "umap",
   clust_method = "louvain",
   n_cores = 1,
   verbose = TRUE,
   print_plot = TRUE,
   seeds = NULL
)
```

Arguments

seurat_obj	A Seurat object containing scRNA-seq data and a PCA
n_runs	Number of DR embeddings and number of cluster assignments to be generated (< 250 recommended)
dr_method	Method to use for dimension reduction, either "umap" or "tsne"
clust_method	Algorithm used for clustering, either "louvain" or "leiden"
n_cores	Number of CPU cores to use for parallelising functions
verbose	Whether the function should print summary statistics as it calculates them
print_plot	Whether the final medoid plot should be printed
seeds	A set of seeds of length n_runs used for generating embeddings and clusters

6 scStability

Value

A list containing:

mean_emb Data frame containing the mean embedding coordinates

mean_clust Vector of the mean cluster assignments

plot ggplot2 object with the medoid embedding plot and cluster assignments

embedding_stats

List of embedding statistics

cluster_stats List of clustering statistics

seurat_object Seurat object now containing mean embeddings and mean clusters

Index

```
clustStable, 2
compareEmb, 3
createEmb, 4
```

scStability, 5